Рефераты. Применение полимерно-металлических труб при сооружении промысловых газонефтепроводов






Удаляется фиксирующая обвязка бухты и конец первого внешнего витка бухты выводится в окно выдачи бухтоукладчика. К фланцу его соединительного элемента пристыковывается фланец с крюком (рис. 12, 13 и 14), на который набрасывается петля троса заякоревания. Конец троса закрепляется на какой-либо близлежащей массивной металлоконструкции и прокладка производится путем сматывания трубы с барабана движущегося бухтоотдатчика. В процессе движения бухтоотдатчика, первая секция гибких труб разматывается и укладывается в траншею или на ее бровку. Концы секций длиной 9…10 метров в любом случае оставляются на бровке траншеи, для удобства работы с концевыми соединениями.

3.5.4. При разматывании не допускается скидывание витков трубы с барабана бухтоукладчика и протаскивание смотанной плети по неподвижным предметам, которые могут повредить оболочку.

3.5.5. После разматывания и укладки первой бухты гибких труб, на бухтоотдатчик устанавливается вторая бухта, соединяются концы первой и второй секций труб  и процесс монтажа труб продолжается.

3.5.6. Перед соединением следует обратить внимание на чистоту уплотняющих поверхностей и при наличии удалить с них продукты коррозии. Убедиться в отсутствии в полости труб заглушек, грязи и посторонних предметов. Соединение секций гибких труб осуществлять с уплотнительным кольцом. Затяжку резьбовых соединений производить равномерно, без перекосов, с усилием 10…15 кгс на длине рычага 300…350 мм.

3.5.7. Подключение гибкого трубопровода к действующим коммуникациям производится посредством переходников, выполненных в виде оконцованных отрезков мерной длины, как гибких, так и металлических труб


ВНИМАНИЕ! В случае перехода водных препятствий, дорог и других коммуникаций, необходимо избегать размещения концевых соединений в зоне перехода.

 

3.6. РЕМОНТ ПОВРЕЖДЕНИЙ

 

Для исключения длительных простоев трубопроводов из гибких труб по причине нарушения их целостности, при необходимости, на основании данной инструкции и другой нормативной документации, может быть произведен их ремонт в промысловых условиях.

Ремонт поврежденного участка трубопровода в зависимости от вида повреждения может производиться:

· без замены поврежденного участка, если повреждена лишь наружная полимерная оболочка,

· с заменой поврежденного участка, в случае разрушения внутренней камеры или ленточного каркаса гибкой трубы.


3.6.1. Ремонт трубопровода без замены поврежденного участка

Этот вид ремонта осуществляется путем восстановления поврежденного участка наружной оболочки. Такой вид повреждений, как правило, возникает в результате небрежной транспортировки, разгрузки, хранения, при размотке бухт и укладке гибкой трубы в траншею и, как правило, обнаруживается в процессе последней.

При обнаружении повреждений внешней оболочки трубы необходимо выполнить следующие действия.

3.6.1.1. С поврежденного участка слесарным ножом срезаются обрывки оболочки. Поврежденный участок и в обе стороны соседние (на расстоянии около 100 мм.) очищают от грязи, масляных пятен и влаги (рис.17).

Ветошью, смоченной в бензине, производят их обезжиривание, а затем выполняют обмотку поврежденного участка липкой полимерной лентой сначала в один слой

Затем еще не менее чем в два–три слоя, с перекрытием поврежденного участка минимум на 50 мм в обе стороны

3.6.2. Ремонт трубопровода С заменОЙ поврежденного участка

3.6.2.1. Ремонт методом замены поврежденного участка трубопровода осуществляется в следующей последовательности.

3.6.2.2. Производится вскрытие траншеи в зоне повреждения трубопровода в соответствии с требованиями РД 39-132-94 и "Правил по эксплуатации, ревизии, ремонту и отбраковке нефтепромысловых трубопроводов", М., НПО ОБТ, 1994. Длина вскрытия должна быть достаточной для подъема трубы на бровку траншеи (около 10 метров в оба конца от места повреждения). Земляные работы вблизи трубопровода и его очистка от земли производятся штыковыми и совковыми лопатами вручную.

3.6.2.3. С помощью трубоукладчика поврежденный участок трубопровода поднимают на бровку траншеи и укладывают на деревянные поддоны.

3.6.2.4. Уточняют место повреждения и определяют длину участка, удаляемого из трубопровода. Обычно длину участка выбирают равной заранее подготовленной вставке из гибкой или металлической трубы.

3.6.2.5. С помощью любого механизированного ручного инструмента производят вырезку поврежденного участка перпендикулярно оси трубопровода и удаляют его (рис. 20).

3.6.2.6. в соответствии с диаметрами, используемых гибких труб приготавливают упоры-заглушки К 136.00.001 и комплекты деталей концевых соединений (рис. 21).

Тщательно замеряют внутренний и наружный диаметры, толщину стенки гибкой трубы и убеждаются в возможности сборки соединений (рис.22). Основным критерием правильности и надежности соединения является обеспечение обжатия стенки трубы между ниппелем и разрезным кольцом в пределах 15...25% ее толщины. Степень обжатия определяется ориентировочно, как отношение разницы номинального внутреннего диаметра разрезного кольца и наружного диаметра ниппеля к разнице наружного и внутреннего диаметров гибкой трубы.

3.6.2.7. Провести армирование обоих концов трубопровода, для чего:

- надвинуть бандаж  с фланцем  на трубопровод на расстояние 90...100 мм от торца трубопровода;

 - вставить ниппель, с установленным в его канавку резиновым кольцом внутрь трубопровода, избегая подрезания внутренней поверхности полимерной трубы насечкой ниппеля;

ПРИМЕЧАНИЕ.

В случае, когда не удается вставить ниппель в трубу из-за значительного перепада их сопрягаемых диаметров, отверстие трубы следует откалибровать с помощью фрезерного устройства (поставляется за дополнительную плату).


- уложить на трубу секторы разрезного кольца, разместив их равномерно по окружности, с примерно равными зазорами между их боковыми плоскостями, и зафиксировать от падения, связав их между собой, например суровой нитью (рис.23).

Внимание: Заусенцы на секторах должны быть удалены!

- надвинуть бандаж с навинченным на него фланцем на разрезное кольцо ;

- установить на ниппель упор-заглушку и осуществить запрессовку концевого соединения с помощью шпилек с гайками (рис. 25).          

- после окончания запрессовки гайки отвернуть и упор-заглушку со шпильами удалить ;             

- при подготовке вставки из гибкой трубы, следует и с другого ее конца установить аналогичное концевое соединение ;              

- заизолировать липкой полимерной лентой переходную зону концевого соединения с трубой с 50% положительным перекрытием смежных витков ленты на протяжении 50...60 мм по обе стороны от хвостовика бандажа и вставить в ниппель уплотнительное кольцо К 126.00.005;  

- при подготовке вставки из гибкой трубы, выполнить те же операции и со второго ее конца .  

3.6.2.8. Установить вставку из гибкой или стальной трубы и затянуть болтовые соединения (см. рис. 16).

3.6.3. Опустить трубопровод в траншею, если он был поднят на бровку.

3.6.4. Ввод трубопровода в эксплуатацию производится в соответствии с инструкцией по эксплуатации на гибкую трубу К 126.00.000 ИЭ.


 

3.7. ПРИСПОСОБЛЕНИЯ ДЛЯ РЕМОНТА трубопровода

 

3.7.1. Комплект деталей концевых соединений К 126.02.000.

3.7.2. Комплект деталей для ремонта трубопровода:

· упор-заглушка К 136.00.001,

· шпильки длиной 150 мм,

· гайки и шайбы.

3.7.3. Подставки технологические высотой 700....800 мм.



3.8. ОБОРУДОВАНИЕ, ПРИМЕНЯЕМОЕ ПРИ СТРОИТЕЛЬСТВЕ

Комплект машин, механизмов инструмента и инвентаря:

- кран КМТ на базе трактора Т-130;

- бухтоотдатчик;

- бульдозер-болотоход Т-130;

- обогреватель «БЕТКС»;

- обогреватель «МАСТЕР»;

- вентилятор вытяжной «ВЦ-4»;

- лопаты штыковые и совковые;

- нож слесарный, острозаточенный;

- лента липкая полимерная;

- ветошь;

- рулетка измерительная длиной до 20 м;

- двухпетлевой канатный строп грузоподъемностью 2 тонны;

- переходник для подсоединения гибкой трубы к насосному агрегату.


В процессе испытания:

- заглушка;

- шпильки М20-110 мм или М24-110 мм (в зависимости от диаметра гибких труб);

- гайки М20-6Н6 или М24-6Н6 (в зависимости от диаметра гибких труб);

- шайбы 20-65Г или 24-65Г (в зависимости от диаметра гибких труб);

- манометр показывающий на давление 100 кг/см2;

- переходник с гибкой трубы на стальные трубы;

- ключи гаечные.


Бухта с трубой устанавливается на бухтоотдатчик. Производится соединение, при помощи гибких шлангов, концевых элементов бухты к подогревателям воздуха «БЕТЕКС» и центробежным вентиляторам марки «ВЦ-4». Подогретый до температуры +95С при помощи подогревателя «БЕТЕКС» и вытяжного вентилятора «ВЦ-4» нагнетается во внутреннюю полость трубы (бухты) производится подогрев трубы изнутри, приблизительно в течение 2-х часов. Одновременно теплый воздух подается под купол из брезента (который укрывает бухту непосредственно на бухтоотдатчике). Контроль за температурой воздуха поступающей из внутренней полости трубы осуществляется при помощи обыкновенного ртутного термометра. Температура воздуха должна быть не ниже +20С в течении 20 минут. После этого можно приступать к монтажу, т.е. непосредственной ее укладке в траншею, при температуре окружающего воздуха не ниже – 30С не более, чем за два часа (время остывания полиэтилена до Т = 0С).

Сварка стыков концевых элементов (из нержавеющей стали) производится электродами марки ЦЛ-11 или ЦТ-15. Контроль качества свариваемых элементов производится методами неразрушающего контроля по технологии контроля сварных стыков для стальной (черной) трубы.


3.9. ГИДРАВЛИЧЕСКИЕ ИСПЫТАНИЯ И ВВОД В ЭКСПЛУАТАЦИЮ

 

3.9.1. Смонтированный трубопровод подвергается наружному осмотру и гидравлическому испытанию, согласно правилам котлонадзора.

Гидравлическое испытание трубопровода производится пробным давлением, равным 1,25 рабочего давления.

3.9.2. Перед гидравлическим испытанием трубопровода его концы оборудуются арматурой (переходником) для подсоединения к насосному агрегату с одной стороны, а с другой стороны устанавливается заглушка с задвижкой для выпуска воздуха и манометром.

3.9.3. После подготовительных работ производится заполнение трубопровода водой на низшей скорости насосного агрегата при открытой задвижке для выпуска воздуха. После выхода из трубопровода воздуха, задвижка закрывается.

3.9.4. Насосным агрегатом плавно, с подъемом давления 3… 5 кгс/см2 в минуту, поднимается давление до пробного давления (1,25 рабочего). Для компенсации падения давления, вызываемого деформацией гибких труб, испытательное давление поддерживается насосным агрегатом в течении пяти минут.

3.9.5. Давление снижается до рабочего и производится выдержка в течение 30 минут, при этом производится осмотр трубопровода.

   Результаты гидравлического испытания считаются удовлетворительными, если давление стабилизируется, а в соединениях гибких труб не обнаружено течи.

3.9.6. Приемка трубопроводов в эксплуатацию производится в соответствии с требованиями СНиП III-3-81 и ВСН 39.1.04.-85.

3.9.7. При сдаче трубопровода в эксплуатацию, строительно-монтажная организация обязана представить документы, подтверждающие качество выполненных работ и оформить паспорт, в который заносятся следующие сведения:

· строительная организация;

· эксплуатационная организация;

· месторождение (место эксплуатации);

· номер скважины и назначение;

· Ф.И.О. ответственных за монтаж;

· результаты гидравлических испытаний;

· дата ввода в эксплуатацию;

· длина трубопровода, номер и длина секций;

· рабочее давление;

· химический состав перекачиваемой жидкости и температура.

   В процессе эксплуатации в паспорте отражаются все изменения технологического режима, сведения о ремонтах и т.п.

3.9.8. Заполнение гибкого трубопровода, а также восстановление циркуляции после остановок, производить плавно с темпом подъема давления 3…5 кгс/см2 в минуту.



4. ЭКОНОМИЧЕСКИЙ ЭФФЕКТ ОТ ПРИМЕНЕНИЯ ГПМТ


Экономический эффект от применения ГПМТ относительно стальных труб по данным ООО «Стрежевойнефтестрой» представлен на рис. 30.

Сравнительная стоимость транспортировки жидкостей

 

Сравнительная стоимость 1 метра стальной трубы без изоляции и ГПМТ

 

Сравнительная стоимость с учетом ремонта, замены стального трубопровода, включая потери производства и штрафы

 
            

Сравнительная стоимость с учетом замены стального трубопровода через 15 лет

 

Сравнительная стоимость 1 метра стальной трубы без изоляции и ГПМТ с монтажем

 
 







Рис. 30. Сравнительные экономические показатели использования стальных труб и ГПМТ

5. ОПЫТ ПРИМЕНЕНИЯ ГПМТ


Проблемы при работе с ГПМТ связаны в основном с несоблюдением условий эксплуатации, частности температурного режима. Все производители ГПМТ ограничивают применение своей продукции температурой плюс 45 0С, плюс 50 0С.

Опыт ОАО «Нижневартовскнефтьгаз» показывает, что при подземной укладке ГПМТ на суходольных участках проблем в эксплуатации не возникает. В качестве примера можно привести успешную работу ГПМТ первого поколения фирмы «Стройпласт» (г. Екатеринбург) в течении пяти лет на трёх участках в системе нефтегазосбора при перекачке высокообводнённой продукции.

Трубы Рофлекс (Самара) в течении шести лет успешно эксплуатировались на одной из выкидных линий куста Самотлорского месторождения при обводнённости 85 – 92 %. В феврале 1996 года аварийная остановка куста привела к замерзанию жидкости в трубопроводе. В июне, после оттаивания, участок вновь был запущен в работу и успешно эксплуатировался ещё два года. Приведённые примеры успешного использования ГПМТ относятся к участкам с высокой обводнённостью, в тоже время к вопросу внедрения на малообводнённых участках следует подходить с осторожностью из-за опасности отложения АСПО и необходимости проведения «горячей » промывки линии.

Проанализировав опыт работы с коррозионно-стойкими трубами можно сделать вывод, что все современные трубы имеют недостатки при эксплуатации, но ГПМТ более всего подходят. Главный недостаток температурное ограничение не помешает работе трубопроводов, так как за двадцать лет эксплуатации месторождения не зафиксировано ни одно случая АСПО.


6. МЕТОДИКА РАСЧЕТА НА ПРОЧНОСТЬ И УСТОЙЧИВОСТЬ ТРУБОПРОВОДОВ ИЗ МЕТАЛЛОПЛАСТОВЫХ ТРУБ

 

6.1. ОБЩИЕ ПОЛОЖЕНИЯ

 

Расчет трубопроводов производите по предельным состояниям несущей способности (прочности и устойчивости).

Расчет трубопроводов на прочность и устойчивость следует производить на действия расчетных: нагрузок. Метод определения расчетных нагрузок и воз­действий и их сочетание надлежит принимать в соответствии с указаниями гла­вы СНиП по нагрузкам и воздействиям.


6.2. РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ

 

Металлопластовые трубы представляют из себя полиэтиленовые трубы, монолитная сетка которых армирована проволочным каркасом. Соединительные законцовки выполнены из полиэтилена низкого давления. Таким образом, основными материалами являются малоуглеродистая сталь и полиэтилен низ­кого давления (ПНД).

Предел текучести стальной проволоки по ГОСТ 32.82-46 равен 310 МПа.  Предел текучести полиэтилена низкого давления по ГОСТ 18599-83 должен быть не менее 20 МПа (200 кгс/см2).

Нормативное длительное сопротивление разрушения материала матрицы в зависимости от условий работы регламентируется СН 550-82. Коэффициент условий работы приведен в табл. 1.

Модуль упругости ПНД в расчетах принимается равным 800 МПа.

Коэффициент Пуассона μ для труб из полиэтилена низкого давления работающих при температуре до 40 °С равен 0,42–0,44. При температуре выше 40 °C коэффициент Пуассона допускается равным 0,5.

При расчете на прочность тела труб,      находящихся под действием внутреннего давления, определяются напряжения в арматуре, эквивалентные напряже­ния по Мизесу и контактные напряжения в полимерной матрице.

 

6.3. РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ

МЕТАЛЛОПЛАСТОВЫХ ТРУБ

 

С целью прогноза характера разрушения металлопластовых труб было исследовано их напряженно-деформированное состояние методом конечных элементов.

Рассмотрим в качестве примера трубу диаметром 95 мм. Конечноэлементная модель конструкции металлопластовой трубы диаметром 95 мм содержит 2129 конечных элементов и 720 узлов. Армирующая стальная сетка моделировалась трехмерными стержневыми КЭ, а полиэтиленовая заливка - толстостен­ными оболочечными КЭ. Фрагмент сетки конечных элементов представлен на рис. 30. Там же показаны номера конечных элементов (1033-1097), располо­женных в одном ряду сетки и моделирующих арматуру в окружном направле­нии.

Результаты исследования напряженно - деформированного состояния кон­струкции металлопластовых труб с помощью конечноэлементной модели МПТ представлены в таблице 3.

Таблица 3

Распределение напряжений в МПТ при давлении 4 МПа

 

Диаметр труб, мм

Толщина стенки, мм

Размер ячейки, мм х мм

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.