Рефераты. Бурение и оборудование скважин при подземном выщелачивании полезных ископаемых






Бурение и оборудование скважин при подземном выщелачивании полезных ископаемых

Томский Политехнический Университет




Кафедра БС




Реферат

«Бурение и оборудование скважин при

подземном выщелачивании полезных ископаемых»

 






Подготовил:

студент гр.2440

Естаев Н.Б.

Проверил:

Брылин В.И.




Томск 2007

Содержание


Содержание. 2

Введение. 3

1. Общие сведения о добычи ПИ методом подземного выщелачивания и о геотехнологических скважинах. 4

1.1. Основные сведения о методе ПВ. 4

1.2. Основные сведения о геотехнологических скважинах. 5

2.3. Классификация геотехнологических скважин. 7

2. Технология бурения геотехнологических скважин. 8

2.1. Способы бурения геотехнологических скважин. 8

2.2. Искривление скважин. Мероприятия по поддержанию заданного направления технологических скважин. 10

3. Буровое оборудование для сооружения геотехнологических скважин. 11

3.1. Основные факторы, определяющие выбор буровых агрегатов. 11

3.2. Самоходные буровые агрегаты с роторными вращателями. 13

3.3. Буровые установки со шпиндельными вращателями. 17

4. Конструкции геотехнологических скважин для ПВ металлов. 20

5. Крепление геотехнолгичеких скважин. 27

5.1. Обсадные трубы для оборудования геотехнологических скважин. 27

5. 2. Монтаж и спуск эксплуатационных и обсадных колонн. 35

6. Цементирование и гидроизоляция геотехнологических скважин. 49

6.1. Назначение цементирования и гидроизоляции. 49

6.2. Способы цементирования геотехнологических скважин. 50

6.3. Технические средства для цементирования скважин. 57

6.4. Технические средства и технология гидроизоляции зон движения рабочих и продуктивных растворов. 58

7. Технология вскрытия продуктивных горизонтов. 61

8. Забойное и устьевой оборудование. 67

8.1. Основные требования к фильтрам. 67

8.2. Типы фильтров. 68

8.3. Оборудование скважин фильтрами с гравийной обсыпкой. 71

8.4. Оборудование устья технологических скважин. 83

9. Основные направления повышения эффективности сооружения геотехнологических скважин. 90

9.1. Расширение призабойной зоны геотехнологических скважин. 90

Список литературы.. 97

Патенты.. 98

Скважинный фильтр (RU 2 284 408 С1) 98

Способ сооружения фильтровой сквадины (2 309 244 С1) 102

Скважинный фильтр (2 254 421 С1) 107


Введение


В последнее время для добычи многих твердых полезных ископаемых (ПИ) применяют геотехнологиче­ские методы добычи с использованием буровых скважин. Они по­зволяют упростить и удешевить добычу, производить отработку бед­ных месторождений, а также месторождений, характеризующихся сложными условиями залегания. Вскрытие рудной залежи осущест­вляют буровыми скважинами, которые предлагается называть геотех­нологическими.

Геотехнологические методы добычи полезных ископаемых позво­ляют снизить в некоторых случаях в 2 – 4 раза капитальные затраты на строительство предприятий, повысить производительность труда по конечной продукции, сократить численность работающих. Кроме того, их применение способствует значительному улучшению усло­вий труда и уменьшению отрицательного воздействия на окружаю­щую среду.

Одним из геотехнологических методов является метод подземного выщелачивания (ПВ). Подземное выщелачивание ПИ, метод добычи полезного ископаемого избирательным растворением его химическими реагентами в рудном теле на месте залегания с извлечением на поверхность. ПВ применяется для добычи цветных металлов и редких элементов и др. ПВ относится к фильтрационным процессам и основано на химических реакциях «твёрдое тело – жидкость».

  При ПВ проницаемых рудных тел месторождение вскрывается системой скважин, располагаемых (в плане) рядами, многоугольниками, кольцами. В скважины подают растворитель, который, фильтруясь по пласту, выщелачивает полезные компоненты. Продуктивный раствор откачивается через другие скважины. В случае монолитных непроницаемых рудных тел залежь вскрывают подземными горными выработками, отдельные рудные блоки дробят с помощью буровзрывных работ. Затем на верхнем горизонте массив орошают растворителем, который, стекая вниз, растворяет полезное ископаемое. На нижнем горизонте растворы собирают и перекачивают на поверхность для переработки.


1. Общие сведения о добычи ПИ методом подземного выщелачивания и о геотехнологических скважинах

 

1.1. Основные сведения о методе ПВ


Сущ­ность подземного выщелачивания ПИ заключается в избирательном переводе полезного компонента в жидкую фазу путем управляемого движения растворителя по руде в естественном залегании или подготовленного к растворению и подъему насыщен­ного металлом раствора на поверхность. С этой целью через скважины, пробуренные с поверхности в пласт полезного ископаемого нагнетается химический реагент, способный переводить минералы полезного ископаемого в растворимую форму. Раствор, пройдя часть рудного пласта, через другие скважины поднимается на поверхность и далее по трубопроводу транспортируется к установкам для пере­работки.

Принципиальная схема подземного выщелачивания металлов при­ведена на рис. 1.


Рис. 1. Принципиальная технологическая схема подземного выщелачивания


В случае монолитных, непроницаемых руд выщелачивание осуществляется из горных выработок, вскрывших пласт ПИ. Раздробленную с помощью буровзрывных работ горную массу орошают растворителем, который, стекая вниз, растворяет минералы полезного ископаемого. Продуктивные растворы собира­ются на нижнем горизонте и перекачиваются затем на поверхность, для переработки.

Важнейшими природными предпосылками применения ПВ являются способность ПИ и его соединений переходить в раствор при воздействии на рудный пласт водного раствора выщелачивающего реагента, а также возможность фильтрации выщелачивающих растворов в породах продуктивного горизонта.

Выбор растворителя для ПВ зависит от состава руд. Наиболее широкое применение находят водные растворы кислот (серной, со­ляной, азотной) или соды.

ПВ применяется при добыче урановых руд, цветных и редких металлов (медь, никель, свинец, цинк, золото и др.). Имеются предпосылки использования его для добычи фосфо­ритов, боратов и др.

Важным фактором повышения эффективности добычи методом ПВ является правильный выбор схемы размещения технологических скважин и расстояний между ними. В практике эксплуатации место­рождений в основном применяется линейная схема расположения скважин, представляющая собой чередование рядов нагнетательных и откачных скважин. Расстояния между рядами и скважинами в ряду колеблются в широких пределах (15 – 50 м и более). Наибо­лее широкое распространение получила схема 25х50 м.

 

1.2. Основные сведения о геотехнологических скважинах


Буровые скважины при ПВ являются ответственным сооружением и служат не только для вскрытия пластов ПИ, но и основным техническим средством в процессе добычи. Буровые скважины производят подачу рабочих агентов в зону продук­тивного пласта и подъем технологических растворов на поверхность, выполняют все операции, связанные как непосредст­венно с процессом добычи, так и контролем за ходом этого процесса. С помощью буровых скважин производится также контроль полноты извлечения полезного компонента и охрана окружающей среды от возможного физико-химического загрязнения. Кроме того, с по­мощью буровых скважин уточняются данные геологической разведки (положение рудного пласта, условия залегания и др.), физико-меха­нические и физико-химические свойства пород, создаются противофильтрационные завесы.

При ПВ руд путем воздействия кислот­ных, щелочных и бактериальных растворителей диаметр скважины определяется размерами раствороподъемного оборудования (эрлифты, погружные насосы и др.).

В зависимости от существующих конструкций добычных агрега­тов конечные диаметры геотехнологических скважин колеблются от 150 до 400 мм.

Следует отметить, что диаметры стволов геотехнологических сква­жин должны определяться с учетом затрат на бурение и на добычу полезного компонента.

Известно, что при уменьшении диаметра скважин все технико-экономические показатели бурения повышаются – увеличиваются механическая и рейсовая скорости, уменьшаются энергетические за­траты и трудоемкость выполнения спускоподъемных операций, сни­жается стоимость 1 м бурения и оборудования скважин.

С другой стороны, при увеличении размеров добычного и подъем­ного оборудования повышается производительность скважин и эф­фективность добычи. Поэтому критерием выбора диаметра скважин в конечном счете является стоимость добытой руды. Необходимо стремиться к тому, чтобы применяемое добычное оборудование при равной производительности имело бы меньшие размеры. Это позво­лит уменьшить диаметры скважин, снизить стоимость буровых работ, а в результате – и стоимость добычи.

Направление геотехнологических скважин выбирается с учетом характера залегания пластов полезных ископаемых. При горизон­тальном залегании пластов скважины задаются вертикальными. При наклонном залегании они могут быть наклонными или направлен­ными вдоль пласта, что может способствовать увеличению добытой руды из одной скважины. Повышению количества добытой руды из одной скважины и уменьшению стоимости, особенно при глубоко залегающих пластах, может способствовать применение много­ствольного бурения. Вскрытие может осуществляться с помощью одиночных скважин и комбинированным способом.

Глубины геотехнологических скважин определяются глубиной залегания продуктивных пластов и колеблются в широких преде­лах – от нескольких метров до 1000 м и более.

 

1.3. Классификация геотехнологических скважин


По своему назначению, составу и объему выполняемых функций буровые скважины, используемые для добычи твердых ПИ, подразделяются на две основные группы: эксплуатацион­ные и вспомогательные.

Эксплуатационные скважины предназначены для осуществления непосредственного процесса добычи – подачи рабочего агента на забой скважины и подъема образующегося раствора из скважины на поверхность.

Эксплуатационные скважины для ПВ металлов с использованием кислотных или других растворителей подразделяются на нагнетательные и откачные.

Нагнетательные технологические скважины предназначены для подачи в продуктивный пласт рабочих растворов.

Откачные скважины предназначены для подъема продуктивных растворов на поверхность.

К вспомогательным скважинам относятся разведочные, наблю­дательные, контрольные, барражные, для гидроразрыва пластов, анкерные и др.

Разведочные скважины используются для уточнения положения пласта ПИ, его мощности, условий залегания и др. Бурение разведочных скважин ведется с отбором керна только в зоне рудного интервала. Они закладываются в основном на месте эксплуатационных скважин и после выполнения поставленных задач используются в дальнейшем для ведения процесса добычи.

Наблюдательные скважины предназначаются для наблюдений и контроля за условиями формирования продуктивных растворов или камер в пределах эксплуатационных блоков, гидродинамическим со­стоянием продуктивного горизонта, растеканием технологических растворов за пределы эксплуатационных участков и их возможным перетеканием в выше или нижележащие горизонты.

Контрольные скважины бурятся на отработанных участках для контроля полноты извлечения полезного компонента из недр, а также для решения других задач (исследование изменений рудовмещающих пород, контроль возможного загрязнения подземных вод и окружающей среды и др.).

Барражные скважины предназначаются для создания вертикаль­ных и горизонтальных противофильтрационных гидравлических завес, ограничивающих растекание выщелачивающих растворов за пределы эксплуатационного блока, а также для уменьшения охвата этими растворами пород, вмещающих рудную залежь.

Скважины для гидроразрыва пластов предназначены для увели­чения поверхности контакта растворителя с породами продуктивных горизонтов путем образования искусственной пористости. При ПВ гидроразрыв пластов используется также для создания механических противофильтрационных завес.

Анкерные скважины предназначены для сооружении бесфильтровых скважин при ПВ металлов. Закрепление пород анкер­ными скважинами обычно осуществляется перед добычей ПИ.

В зависимости от назначения геотехнологические скважины имеют существенные различия в конструкции, в технике и техноло­гии бурения и оборудования. К ним также предъявляются различные требования.

Наиболее высокие требования к качеству сооружения предъявля­ются к эксплуатационным скважинам, оказывающим наиболее су­щественное влияние на технико-экономические показатели добычи полезных ископаемых.

2. Технология бурения геотехнологических скважин

 

2.1. Способы бурения геотехнологических скважин


Из различных способов бурения для сооружения геотехнологиче­ских скважин в настоящее время в основном применяется враща­тельное бурение с прямой промывкой.

Однако в связи с расширением областей применения геотехноло­гических методов добычи и с целью повышения их эффективности проводятся работы по разработке более прогрессивных способов бурения. К числу таких способов относятся: 1) вращательное буре­ние с обратной промывкой; 2) вращательное с продувкой воздухом; 3) ударно-вращательное; 4) вибрационное; 5) термическое; 7) термомеханическое и др.

Вращательное бурение с прямой промывкой применяется для бу­рения различных по твердости пород и находит широкое применение при проходке устойчивых пород. При раз­работке россыпных месторождений методом ПВ из-за не­достаточной устойчивости стенок скважин и наличия различной ве­личины валунов этот способ бурения имеет значительные недостатки, так как требует применения специальной технологии ведения работ. В качестве породоразрушающих инструментов (ПРИ) применяются долота (лопастные и ша­рошечные), а также различные пикобуры.

Вращательное бурение с прямой промывкой осуществляется с по­мощью различных буровых установок (роторных, шпиндельных). Для бурения мягких пород сплошным забоем широкое применение находят установки с роторными вращателями типа УРБ-ЗАМ, 1БА-15В, УБВ-600 и др.

Вращательное бурение с обратной промывкой особенно эффективно может быть применино при сооружении техно­логических скважин для ПВ металлов, что позволит уменьшить кольматацию продуктивных пластов, увеличить диаметры скважин и создавать фильтры с уширенным контуром гравийной обсыпки.

Для бурения скважин с обратной промывкой сконструирован бу­ровой агрегат 1БА-15К. Можно также использовать буровые уста­новки 1БА-15В, УКС-22М и др., приспособив их для этих целей. Кроме того, при бурении с обратной промывкой требуется примене­ние специального инструмента и приспособлений (бурильные и веду­щие трубы и др.).

Вращательное бурение с продувкой при сооружении технологи­ческих скважин повышает качество вскрытия продуктивных горизон­тов, уменьшает затраты времени на освоение скважин и повышает технико-экономические показатели, особенно при сооружении техно­логических скважин ПВ.

Однако этому способу бурения присущи и значительные недо­статки, связанные с его неприменимостью при бурении глинистых, песчано-глинистых и сыпучих пород и при встрече подземных вод.

Наиболее эффективными способами бурения скважин на россы­пях могут быть ударно-забивное, ударно-канатное, виброударное, термическое, термомеханическое, электроимпульсное и др.

 

2.2. Искривление скважин. Мероприятия по поддержанию заданного направления технологических скважин


Поддержание заданного направления геотехнологических сква­жин имеет большое значение. При ПВ металлов искривление скважин может привести к нарушению принятой системы разработки место­рождений.

В настоящее время при разработке методом ПВ урановых руд на­иболее распространенной является линейная система с шахматным расположением скважин с расстоянием 25х50 м. При искривлении скважин расстояния между осями скважин в зоне рудного пласта могут измениться, что приведет к нарушению полноты выемки полез­ного компонента.

При отработке пластовых месторождений отклонение забоя скважины от вертикали при буре­нии вертикальных скважин достигает 1,5 – 4,5 м при глубинах сква­жин до 150 м и 6 – 15 м при глубинах скважин свыше 250 м.

При указанной выше сетке расположения технологических сква­жин максимальное сближение фильтров может достигнуть 5 м, а максимальное их удаление – 80 м. В связи с искривлением скважин может значительно изменяться конфигурация ячеек выщелачиваю­щих блоков (рис. 2). Допустимое отклонение ствола скважин от вертикали не дол­жно превышать 1 – 2° на 100 м при сооружении неглубоких скважин и 1° на 100 м при сооружении скважин глубиной более 250 – 300 м.

Рис. 2. Влияние искривления скважин на форму отрабатываемой ячейки при ПВ:

1 – проектная форма ячейки; 2 – фактическая форма ячейки; 3 – устье откачных скважин; 4 – устье нагнетательных скважин; 5 – фактическое положение забоя нагнетательных и от­качных скважин.


Разработка мероприятий по поддержанию заданного направления геотехнологических скважин является важной задачей. Такими мероприятиями могут быть следующие: а) тщательная установка стола ро­тора; б) зазор между ведущей трубой и клиньями не должен пре­вышать 2 – 3 мм; в) искривленность бурильных и утяжеленных труб, а также ведущей трубы должна быть в пределах нормы; г) тип долота подбирать в соответствии с физико-механическими свойст­вами пород; д) низ бурильной колонны собирать без перекосов, не допуская несоосности ее деталей и узлов; е) применять правильный режим бурения.

Основным средством борьбы с искривлением скважин является правильная конструкция низа бурильной колонны. Бурение сква­жин необходимо вести с обязательным применением утяжеленных бурильных труб. Диаметр УБТ должен быть близким к диаметру долота.

Для придания скважинам заданного направления при значитель­ном несоответствии диаметров долота и труб очень часто предусмат­ривается центрирование долота путем установки над долотом цент­раторов или фонарей, изготовленных из труб близкого к долоту диа­метра. Центраторы могут также устанавливаться по длине УБТ или БТ на расстоянии друг от друга, равном длине полу­волны изогнутой колонны труб.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.