Рефераты. Синергетика: различные взгляды






При этом важно определить концептуальное содержание хотя бы нескольких наиболее важных с методологической точки зрения категорий, чтобы представить себе контуры нового научного направления. Например, традиционно хаос считался чем-то лежащим за пределами науки, играл лишь роль первоначала в греческой философии. В новой постнеклассической синергетической картине хаос означает неструктурированность бытия, и потому хаос не подчиняется детерминистическим законам. Согласно синергетике, мир имеет всегда определенные структуры, упорядоченные тем или иным образом. Нет абсолютной бесструктурности и абсолютного беспорядка. Есть структура и упорядоченные формы, не укладывающиеся в известной науке модели описания. Структуры зарождаются, эволюционируют, претерпевая самые разные катаклизмы и трансформации и они могут быть вписаны с помощью "законов" хаоса, если хаос разделить на различные типы: равновесный, неравновесный (динамический) и статистический. Тем самым хаос становится предметом изучения науки и осмысливается философией. 

Далее, принципиальным для всей новой системы размышлений выступает категория самоорганизации, под которой понимается способность тех или иных систем к саморазвитию, самозарождению, используя при этом не только и не столько приток энергии, информации, вещества извне, сколько пользуясь возможностями, заложенными внутри системы. 

Принципиально важно для синергетики то обстоятельство, что она имеет дело не только с нелинейными, нестабильными системами, но и с тем, что она рассматривает сложные, эволюционирующие и открытые системы. Таковы общество, различные его подсистемы, система "человек-природа", рост народонаселения и т.д. и т.п. При этом открытыми называются системы, которые обмениваются с внешним миром веществом, энергией и информацией. 

Не менее интересны и методологически значимы и другие базовые категории синергетики, но и приведенные положения достаточно ясно показывают, что новая синергетическая концепция вводит новую онтологию, новую категориальную сетку для изучения процессов находящихся в состоянии нестабильности, неравновесности и вдали от равновесия. Все эти утверждения имеют принципиальное значение для философии и методологии науки. Концептуально важно, что в новой системе хаос, случайность, дезорганизация и т.д. не разрушительны, а в ряде случаев могут быть созидательными, конструктивными. Вот почему актуализируется задача: научить жить человека в состоянии неопределенности, нестабильности, хаоса, показав ему, что и хаос, и неопределенность и нестабильность можно использовать конструктивно для решения тех или иных задач. Ведь многие явления социальной жизни, например, формирование общественного мнения, сложные экономические процессы в период кризисов, распространение научной информации и т.д. носят нелинейный характер и подчиняются законам самоорганизации. Все это доказывает обоснованность интереса философских систем к новым достижениям научной мысли и ставит сложные задачи перед образованием. 

Синергетика, хочет она этого или нет, но если иметь в виду ее смысловую интенцию, то она стремится пересмотреть онтологию бытия, делает значительный, еще больший шаг в возвращении субъекта в мир теории, нежели квантовая механика, поскольку субъект участвует в формировании объекта исследования. Объекты согласно синергетике должны стать человекоразмерными. И в этом чрезвычайно важном для философии положении синергетика продолжает и углубляет начатую неклассической наукой традицию, особенно квантовой механикой со своим принципом, дополнительности, традицию возвращения субъекта в мир теории. Тем самым усложняется вопрос о критериях реальности затрудняется решение проблемы демаркации между реальным и вымышленным. Не случайно встает проблема полионтологичности бытия. 

Между тем на этом пути встают сложные философско-методологические вопросы. Ведь ценность науки и в определенном отношении философии, проистекают из того, что они формулируют некие общеобязательные, интерсубъективные, асоциальные положения. Таким образом, встает вопрос о социокультурной ценности самого направления развития мысли, которая стремится уйти от общеобязательности, интерсубъективности и асоциальное. 

В этой связи первая проблема, актуализируемая синергетической концепцией, - отношение к прошлому, тем достижениям научного знания, которые исходили из всеобщности линейности, порядка и стабильности. Вторая не менее сложная проблема, имеющая философско-мировоззренческий характер, - культурные последствия деонтологизации знания, усиления участия субъекта в формировании познаваемого объекта. Ситуация осложняется тем, что подобное расширение роли субъекта может быть интерпретировано как отрицание реальности объекта. Не случайно некоторые видные постмодернисты, например, Ж.-Ф.Лиотар, Ж.Делез и др. широко используют идеи синергетики. Последнее естественно, поскольку между децентрацией субъекта и деконструкцией текста в постмодернизме и деонтологизацией объекта познания в синергетике имеется не внешняя, а более органичная, содержательная связь. 

В новых условиях необходимо научить человека жить в условиях неопределенности, сложности, открытости, в мире, где нет единого центра, который не только линейно не стремится ни к какому прогрессу, но возможно и никуда не стремится. Важно понять, что определенность ищем мы, это мы хотим, чтобы мир был похож на наш дом, двери которого закрыты, это нам хочется, чтобы у мира был единый центр и чтобы он линейно развивался по пути прогресса. Но все наши субъективные предпочтения ставятся под вопрос новой стратегической концепцией и потому нам нужно готовить учеников к этому новому видению бытия. Подобная радикальная переоценка ценностей, затрагивающая не только ценностно-мировоззренческие установки людей, но и сложившиеся психологические стереотипы, не может пройти безболезненно. Но, видимо, подобная переоценка ценностей неизбежна. 

 


 СИНЕРГЕТИКА И ГЛОБАЛЬНЫЕ ПРОБЛЕМЫ

СОВРЕМЕННОСТИ  

Суриков Я.Я.


Обсуждается дискуссионность ситуации с термином "синергетика". Обосновывается своевременность появления данного направления исследований. Синергетика трактуется как начало многовекового процесса синтеза различных наук. Применение синергетических подходов к изучению сложнейшего объекта - биосферы - в сочетании с современной термодинамикой позволяет глубже понять суть современного глобального кризиса. Делается вывод, что выход из кризиса без учета законов термодинамики существенно затрудняется. 

Термин "синергетика" привлекает внимание, как своих сторонников, так и противников. Раздаются голоса о возможности развития науки без использования данного термина. Способствует ситуации несколько обстоятельств, из которых можно выделить два. Действительно, много конкретных задач решается, и будет решаться без понятий синергетики. Существеннее второе - отсутствие точного общепринятого определения самого термина "синергетика". Но никакого трагизма здесь нет, если учесть, что сравнительно молодое слово, обладая ярко выраженной междисциплинарностью, привлекает внимание специалистов из столь различных наук, в которых и само слово "термин" понимается по-разному и дается с различной степенью точности и размытости.  Последовательное и терпеливое обсуждение вопроса, безусловно, приведет к уточнению понятия.  Плодотворность синергетики видна каждому, кто знакомится с её достижениями. Сильное впечатление оставляют работы по синергетике искусства. Привлечение точных естественнонаучных подходов и моделей позволяет существенно продвинуться в понимании закономерностей творческого мышления и функционирования человеческого мозга. Например, теория фазовых переходов в ферромагнетиках является важной аналогией для локального описания нейрофизиологических свойств мозговой деятельности человека. Математическая модель нейронной активности обладает многими свойствами, характерными для ферромагнетиков. 

Психология человека, казалось бы, далека от математики. Но и здесь все шире успешно используются математические модели, основанные на физических, биофизических, эволюционных и других аналогиях. Физической моделью распределения нейронной памяти может служить так называемое спиновое стекло - магнитное вещество с аморфной неупорядоченной структурой. Качественно свойства распределенной памяти можно понять из энергетических представлений. Зависимость свободной энергии спинового стекла как функции некоторой координаты в N-мерном пространстве конфигураций имеет множество минимумов, а значит и возможных состояний. Система оказывается способной создавать картины-образы, хранящие определенную информацию. Такая система способна распознавать вводимые извне образы по степени их близости к одной из записанных картин. Автор модели распределенной нейронной памяти Хопфилд показал глубокую аналогию свойств такой физической модели со свойствами нейронной сети. 

Много аргументов в пользу синергетики можно найти и в сборнике "Синергетика" (изд. МГУ, 1998). В работе О.П. Мелеховой показано, что эмбриогенез - это природная синергетическая модель, и основные понятия эмбриологии могут быть изложены в терминах синергетики. Е.Д. Никитин отмечает некоторые почвенно-синергетические положения. В частности, делается вывод, что большинство чернозема России вышли за пределы порога своей устойчивости и оказались в критическом состоянии -- в точке бифуркации. Убедительно и аргументировано отмечаются важнейшие особенности самоорганизации Земли и Биосферы в работе О.П. Иванова. Не имея возможности говорить обо всех особенностях, нельзя не согласиться с самой трагичной - человечество действительно движется методом проб и ошибок, а корректировки всегда носили запаздывающий характер. 

Соглашаясь с В.Г. Будановым, что объем и содержание синергетики взрывным образом расширяются, попытаемся понять этот феномен. 

Человечество в  процессе познания окружающего нас сложного мира двигалось по пути его анализа, что привело к созданию многих естественных и гуманитарных наук. На этом пути человечество добилось больших успехов и решило множество актуальных проблем. А какова главная цель науки? Мир един, все части, на которые мы его поделили при анализе, существуют только в единстве, а не порознь, поэтому наша главная задача -постигнуть его именно в единстве. Нам совершенно недостаточно знать, из чего состоит мир, нам необходимо знать, как все эти части взаимодействуют, куда мир движется и как развивается. Познание мира в его единстве, то есть во всей его сложности и многообразии позволяет следить за его динамикой и делать прогноз. Наука тогда становится наукой, когда она способна прогнозировать. 

С этой точки зрения многовековой процесс развития науки обладает существенным недостатком: гипертрофированное внимание уделялось анализу, а объединяющий все науки процесс синтеза практически не развивался. В результате человечество столкнулось с серьезнейшими проблемами существования биосферы, что заставило в последние десятилетия заняться и объединительным процессом. 

Почему важнейшему процессу синтеза уделялось недостаточное внимание? Произошло это не случайно. Во-первых, задача небывалого синтеза всех наук, занимающихся, например, изучением биосферы, чрезвычайно сложна. Например, из-за огромного влияния на деятельность биосферы человека, при синтезе необходимо учитывать не только естественные науки, а вообще все, которые влияют на развитие, в частности общественные науки и процессы. Разумеется, надо учитывать и экономические законы и процессы. Можно представить, насколько сложна и непривычна состыковка столь различных направлений исследований. 

Во-вторых, на пути решения задач синтеза могут встречаться и принципиальные препятствия. В применении к биосфере это невозможность использования основного метода исследований в естественных науках - эксперимента. Критерий истины - эксперимент, ставящий окончательную точку при сосуществовании различных теорий, гипотез или мнений. Обычно эти теории являются достаточно грубыми моделями, каждая из которых чем-то пренебрегает или чего-то не учитывает в сложной действительности. Все учитывает только реальный процесс, который и дает нам истинный ответ. А с биосферой один неудачный эксперимент - и нет Человека в биосфере или самой биосферы. 

Остается единственный путь - математическое моделирование при обязательном синтезе всех достижений науки. И вот в момент пика актуальности процесса синтеза появляется удачное слово - синергетика. Разумеется, его смысл быстро выходит за рамки первоначального узкого применения и требует периодической корректировки. Можно сказать, что синергетика -начало многовекового процесса синтеза различных направлений науки. 

Необходимо отметить, что процесс синтеза развивался и до появления термина "синергетика". Удачной попыткой являются оценки ближайших перспектив человечества, проведенные группой ученых под руководством Денниса Медоуза с помощью глобальной компьютерной модели "МИР-З". Синтез наук осуществлялся на основе эмпирических данных о динамике пяти основных систем, взаимодействующих на нашей планете. Разработанная модель мировой системы была соответствующим образом тестирована. Исходя из данных за 1900 г. были получены результаты для 1970 г., хорошо совпадающие с фактическими данными. Выводы корректно сформулированы с важной (но иногда опускаемой недоброжелателями) оговоркой - "если существующие тенденции в пяти рассмотренных системах сохранятся". А сохраняются ли они или нет - лучший ответ дает время, прошедшее с момента публикации работы "Пределы роста" в 1972 г. 

Обладает ли недостатками модель МИР-3? Да. В ней нет военного сектора, гражданских беспорядков, забастовок, коррупции, наводнений, землетрясении, Чернобылей эпидемий СПИДа и т. д. Поэтому модель чересчур оптимистична, её прогнозы могут отражать наиболее благоприятные пути развития реального мира. 

Эмпирический подход может обладать и существенным недостатком, не позволяя иногда в случае очень сложных систем выяснить глубинную сущность явления. Помочь могут старые добрые "аналитические" науки. Например, глобальный кризис компьютерная модель предсказывает, а причину - нет. 

Актуальнейшим вопросом современности является состояние биосферы. Мощное антропогенное воздействие на биосферу происходит в условиях, когда никто не может сказать, насколько близко её состояние к точке бифуркации. Есть серьёзная опасность, что мы можем пройти эту точку "явочным порядком". Рассматривая биосферу как открытую систему в рамках неравновесной термодинамики отметим, что в течение миллионов лет её энтропия непрерывно понижалась за счет потока солнечной энергии. Естественно, это приводило к усложнению структур и повышению организованности биосферы. Однако недавно (исторически совсем недавно) человек выступил как активный катализатор механизма бурного роста энтропии биосферы, сжигая накопленное за миллионы лет реализации процесса фотосинтеза органическое топливо. В результате деятельности человека энтропия биосферы начала возрастать. Граничные условия, обусловленные конечностью потока солнечной энергии, игнорировать невозможно. Решение глобальных проблем немыслимо без учета   законов   термодинамики   (Г.А.Кузнецов,   В.В.Суриков). Необходимо вернуть биосферу в состояние с постоянно уменьшающейся энтропией.

Разработка любых концепций устойчивого глобального развития должна обязательно учитывать максимально возможное значение энергии на душу населения, обусловленное конечностью нашей планеты. 

Литература


1. Синергетика. Труды семинара. Выпуск 1. М. Изд. МГУ. 1998. 

2. Медоуз Д.Х., Медоуз Д.Л., Рандерс И., Беренс В.В. Пределы роста. М. 1991.

3. Кузнецов Г.А., Суриков В.В. Концепция глобального развития: термодинамические аспекты. Вопросы философии. 1981, №12, с. 95-102. 

 


 Синергетика и биология

М.И. ШТЕРЕНБЕРГ


В "Вопросах философии" (1997, № 3) опубликована подборка статей, посвященная синергетике, применимости ее понятийного аппарата к решению проблем различных наук. Пожалуй, не будет сильным преувеличением, если скажем, что общий смысл статей - оптимизм по поводу возможностей синергетики, в частности перспективы на ее основе построить теорию эволюции, справедливую для всех "эмпирических наук" (Э. Ласло). Нас будет интересовать именно последний тезис в контексте того, что дает использование таких понятий, как "хаос", "бифуркация", "порядок" и др. для понимания феномена эволюции. В рамках такого анализа с неизбежностью придется обращаться и к понятиям термодинамики, поскольку корни синергетики находятся в термодинамике открытых систем.  В статье аргументируется точка зрения, что область применения синергетики в принципе ограничена некоторыми чисто физическими процессами. 

Хаос и порядок

Из статистического выражения второго закона термодинамики следует, что с ростом энтропии расположение частиц (частей) системы становится все более и более хаотичным. Это положение произвело на общество такое впечатление, что стало философским и культурным достоянием. "Энтропия и беспорядок не только похожи, а есть одно и то же", - утверждает Р.Е. Пайерлс [I]. Э. Шредингер иллюстрирует это на примере расплавления кристалла, в результате чего "изящные и устойчивые расположения атомов или молекул в кристаллической решетке превращаются в непрерывно меняющиеся случайные распределения" т.е. в жидкость [2]. Как известно, наиболее наглядно свойства энтропии проявляются в изолированных системах, где она монотонно возрастает. Однако множество примеров противоречит приведенным утверждениям. Вот одно из них. Возьмем хаотическую смесь льда и воды и изолируем ее. Если вода холодная и лед достаточно охлажден, то эта хаотическая смесь превратится в упорядоченный ледовый кристалл. Этот пример обладает достаточной общностью, ибо он может быть реализован на всех смесях типа твердая - жидкая фаза. Естественно, возникает предположение, что рост энтропии может сопровождаться упорядочением, а это противоречит выводам, непосредственно вытекающим из статистического выражения второго закона термодинамики.

Очевидно, что полярным по отношению к понятию "хаос" является понятие "порядок". Но как оно понимается? Произвольное обращение с этим понятием неоднократно встречается в научных работах. Но, как пишет Р. Фейнман, "Порядок в физическом смысле вовсе не должен быть полезным для людей. Это слово просто указывает на существование какой-то определенности" [З]. Представляется, что наибольшая определенность достигается в предложении Дж. фон Неймана считать наиболее упорядоченной ту систему, состояние которой описывается наименьшим количеством информации. Его нужно дополнить условием, чтобы сравнение производилось на одном уровне описания, на чем, собственно, и построено различие между термодинамикой и статистической физикой. Действительно, если, например, на молекулярном уровне равновесное состояние раствора описывается относительно сложными статистическими зависимостями, то на макроуровне оно выразится как постоянство объема, температуры и концентрации. С этой точки зрения примеры, на которые опирается И. Пригожий для своих построений, не представляются убедительными. Он строит свои рассуждения, в частности, на аналогии с течением жидкости, когда от микровоздействия (бифуркации) ламинарный поток переходит в турбулентный, где вихри символизируют возникший порядок. Чувствуя малоубедительность этой аналогии, Пригожин пишет: "Что мы называем порядком? Что мы называем беспорядком? Каждый знает, что определения меняются и выражают чаще всего суждения". Для подтверждения этого в качестве примера он приводит кристалл, считающийся образцом упорядоченности, но опровергает это утверждение тем фактом, что в узлах кристаллической решетки молекулы хаотически колеблются [4]. На макроуровне состояние ламинарного потока в круглой трубе описывается сравнительно простой зависимостью. 

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.