Равновесный мост, действуя на электропривод регулирующего вентиля с помощью контактов регулятора, автоматически поддерживает заданную дозу коагулянта. Следовательно, для дозатора Чейшвили-Крымского не нужно постоянства концентрации раствора коагулянта. Изменение концентрации автоматически компенсируется большим или меньшим открытием регулирующего вентиля. Необходимо только, чтобы концентрация была выше некоторого предела, определяемого пропускной способностью устройств для подачи раствора коагулянта в воду.
Таким образом, при применении дозаторов этого типа отпадает необходимость в устройстве отдельных баков для приготовления раствора и отдельных расходных баков; достаточно иметь только один небольшой растворный бак. Однако надо обеспечить такие условия работы, чтобы скорость растворения коагулянта превышала его наибольший расход.
На Ленинградской главной водопроводной станции при непрерывном растворении оказался достаточным бак емкостью до 30 м3 на 1 тонну коагулянта в 1 час, тогда как до автоматизации требовался бак вместимостью не менее 300 м3 на такое же количество коагулянта.
Применяемый в схеме контактный ареометр имеет контакты, замыкающиеся при снижении концентрации раствора коагулянта ниже заданного предела. На плоту ареометра, плавающем в баке с раствором коагулянта, укреплена герметически закрытая катушка индукционной телеметрической системы. При изменении концентрации, а следовательно, и объемной массы раствора коагулянта изменяется взаимное расположение катушки и сердечника, что вызывает соответствующее изменение положения стрелки вторичного прибора, соединенного с индукционной катушкой ареометра. В качестве вторичного прибора используется Э-280 (указывающий) или Э-612 (регистрирующий). Электрическая схема ареометра включает задатчик и усилитель с поляризованным реле. Задатчик представляет собой обычный реостат с сопротивлением около 1500 Ом. Подвижной контакт задатчик устанавливается в такое положение, при котором распределение напряжения на секциях реостата получается таким же, как и распределение напряжения на секции индукционной катушки ареометра при заданной концентрации. В этом случае напряжение между средней точкой задатчика и средними точками катушки и вторичного прибора, подаваемое на вход усилителя, равно нулю. В случае понижения концентрации раствора коагулянта изменяется напряжение на индукционных катушках и на вход усилителя окажется поданным напряжение, под действием которого поляризованное реле замкнет свой контакт. Если же произойдет увеличение концентрации раствора коагулянта сверх заданной, то напряжение на входе усилителя будет иметь фазу, сдвинутую на 1800, вследствие чего поляризованное реле разомкнет контакты.
Пуск и установка элеватора осуществляется автоматически. При понижении концентрации раствора коагулянта в баке до заданного предела замыкаются контакты ареометра КА и включается реле пуска элеватора РЗ, которое своими контактами замкнет цепь магнитного пускателя одного из двух элеваторов в зависимости от положения переключат
Опыт применения дозатора коагулянта Чейшвили-Крымского показал, что этот дозатор может использоваться лишь при очистке воды невысокого (до 150 … 200 мг/л) солесодержания, что является его существенным недостатком. К другим его недостаткам относятся большое запаздывание в регулировании, нарушение работы электролитических ячеек при отложении в них осадка, сложность принятой температурной компенсации. Для успешной работы дозатора необходимо квалифицированное обслуживание
Глава 9. Организация и планирование строительного производства
9.1 Задание на проектирование
Разработать документацию проекта производства работ (ППР) на строительстве участка от колодца № 9 до колодца № 13 протяженностью 2490 км в следующем составе: пояснительная записка, стройгенплан, сетевой график строительства.
Уровень строительства – летний;
Глубина промерзания грунта - 1,5 м;
Грунт – песок;
Уровень грунтовых вод на 3,3м ниже поверхности земли;
Трубы чугунные, диаметрами 400, 350 и 250 мм.
9.3 Номенклатура и объемы строительно – монтажных работ
Перечень строительно-монтажных процессов, принимаемый в соответствии с технологической последовательностью выполнения работ и с параграфами единых норм и расценок, отображен в таблице № 9.1
Таблица № 9.1
Технологические процессы
Единицы измерения
Подготовительные работы
Смены
Механизированное разработка траншей и котлованов одноковшовым экскаватором
100 м3
Укрепление стенок траншеи и котлованов
м2
Ручная зачистка дна траншей и котлована грунта
м3
Раскладка материала
мп
Укладка труб
Устройство колодцев
шт
Установка задвижек и гидрантов
Частичная засыпка
Предварительное испытание
Устранение дефектов
Окончательное испытание трубопровода
Полная засыпка
Промывка и хлорирование трубопровода
Благоустройство
Сдача системы
Определение объемов земляных работ.
Механизированное рытье траншей
Размеры траншеи:
Так как грунт в котором ведутся работы – в стесненных условиях, песок и глубина заложения не более 1,93м., то траншею выполняем без откосов. Глубина заложения траншеи:
I Н 1 = 1,5 + 0,43= 1,93 м
II Н 2 = 1,5 + 0,375= 1,875 м
III Н 3 = 1,5 + 0,27 = 1,77 м
Ширина траншеи [Справочник монтажника т.39.1]:
I В1 = 0,43+ 0,6 = 1,03 м
II В2 = 0,375+ 0,5 = 0,875 м
III В3 = 0,27+ 0,5 = 0,77 м
Объем траншеи:
I V1 = 1,03 х 1,93 х725 = 1441,2 м3
II V2 = 0,875х 1,875 х825 = 1353,5м3
III V3 = 0,77х1,77 х940 = 1281,13 м3
Итого: Vтр.=1441,2+1353,5+1281,13=4075,9 м3
Большей производительности при устройстве траншей экскаватором достигается при движении его по оси траншеи и укладке грунта в отвал с одной стороны.
Площадь поперечного сечения траншеи: Fтр =1,03 х 1,93 = 1,99 м2
Площадь поперечного сечения отвала: Fотв. =1,99 х 1,1=2,2м2
где, Кпр.-коэффициент разрыхления, для песка , 1,1;
Высота отвала: Но=ÖFотв.=Ö 2,2 = 1,5 м.
Ширина отвала по низу: В = 2*Но = 2 х 1,5 = 3 м.
Проверка: В+в ÍR
2+а
где , в - ширина отвала по низу;
В- ширина траншеи по верху;
а- расстояние от основания откоса до края траншеи;
3 + 1,8 / (2+0,96)= 1,6 Í 7,5
При выполнении равенства принятый экскаватор можно ставить на ось траншеи.
Механизированное рытье котлованов для колодцев.
Определение габаритов колодца:
Трасса Æ 400 – 250 мм. длиной 2490 м;
2540/150 + 1 = 18 шт.
На трассе устанавливаем 18 колодцев через 150 м из железобетонных элементов.
Высота колодца будет 2,35 м с учетом толщины раствора швов.
Минимальное расстояние от элементов оборудования до внутренних поверхностей колодцев приняты из условий нормального монтажа и эксплуатации по [3 табл.54.3 ].
Размеры котлована под принятый колодец диаметром кольца 1500 мм. длина 2,7 м. ширина 2,7 м. [т 44.1 Справочник. монтажника].
Высота котлована принимаем 2,5 м. с возможностью устройства люка и отмостки .
I Vкот= 2,7 х 2,7х 1,93 = 14,07 м3
II Vкот= 2,7х2,7х1,875=13,67 м3
III Vкот = 2,7х2,7х1,77=12,9 м3
Полный объем выработки земли под колодцы:
I Vкот.полн.=5х14,07=70,35 м3
II Vкот.полн.= 6х13,67=82,02 м3
III Vкот.полн.=7х12,9=91 м3
Итого:Vкот = 70,35 + 82,02 + 91 =242,67 м3
Общий объем механизированных работ:
= + =4075,9+242,67=4361,08 м3
Объем ручной зачистки траншеи.
Ручная зачистка траншеи выполняется для достижения расчетной глубины заложения труб. Глубина зачистки равна 10 см, тогда объем зачистки траншеи будет равен:
I = 0,1 х B х L =0,1 х 1,03 х 725=74,7 м3
II = 0,1 х 0,875 х 825=150 м3
II =0,1 х 0,77 х 940= 97,5 м3
где , L – длина одного участка;
В – ширина траншеи;
Общий объем ручной зачистки траншеи:
= + + = 74,7+72,19+72,38=219,27 м3
Объем приямков.
Для возможности заделки стыков труб, перед их укладкой отрывают
приямки.
Объем приямка: Размеры: длина 1м. ширина Dнар.+0,6 м. высота 0,3 м.
Vпр.=1 х 1 х 0,3=0,3 м3
= 0,36 х n = 0.36 х 508 = 182,88 м3
где, n кол-во приямков;
n=2540 / L = 2540 / 5= 508 шт.
где, L- длина одной трубы;
Y- кол-во колодцев;
= а × b × n × 0,1
а – ширина котлована
b – длина котлована
n – количество колодцев на участке
0,1 – недобор грунта экскаватором
I = 2,7 х 2,7 х 5 х 0,1 = 3,64 м3
II = 2,7 х 2,7 х 6 х 0,1 = 4,37м3
II = 2,7 х 2,7 х 7 х 0,1 = 5,1 м3
=3,64 + 4,37 + 5,1 = 13,11 м3
Общий объем работ, выполняемых вручную:
åVруч.= ++=219,27 + 182,88 + 13,11 = 415,26 м3
Объем частичной засыпки.
Частичная засыпка выполняется вручную на высоту 0,3 м от верха трубы. Приямки остаются не засыпаными, но после предварительных испытаний засыпаются.
Vчас. = Fчас. х L
где, Fчас. – площадь поперечного сечения;
L - длина траншеи без приямков;
= Fтр – Fтруб = 1,03х 0,73– (3,14 х 0,432/4) = 0,6 м2
= Fтр – Fтруб = 0,875 х 0,675 – (3,14 х 0,3752/4) = 0,48м2
= Fтр – Fтруб = 0,77 х 0,57 – (3,14 х 0,272/4) = 0,38 м2
где, Fтр - площадь поперечного сечения траншеи;
Fтруб - площадь поперечного сечения трубы, Fтруб = п R2/4;
L1 = 725– (1 х 145) = 580 м
L2 = 825 – (1 х 165) = 660 м
L3 = 940 – (1 х 188) = 752 м
= 0,6 х 580 = 348 м3
= 0,48 х 660 = 316,8 м3
= 0,38 х 752 = 285,76 м3
Полной объем частичной засыпки.
åVчас.= + + = 348 + 316,8 + 285,76= 950,56 м3
Полная механизированная засыпка.
Полная механизированная засыпка производится после предварительного испытания и устранения дефектов.
= +
где, – объем засыпки траншеи;
- объем засыпки котлованов;
Объем засыпки траншей:
= Vтр – Vзасчаст = 1441,2 – 348 = 1093,2 м3
= 1353,5 – 316,8 = 1036,7 м3
= 1281,13 – 285,76 = 995,37 м3
= 3125,27 м3
Объем засыпки котлованов:
= Vкот. - Vкол. = 14,07 – (3,14 х 1,032 / 4) х 1,93 = 25,45 м3
= 13,67 - ( 3,14 х 0,8752 / 4) х 1,875 = 24,5 м3
= 12,9 - ( 3,14 х 0,772 / 4) х 1,77 = 22 м3
= 71,97 м3
Полная механизированная засыпка
Vмех =+ = 3125,27+71,97=3197,24 м3
Устройство крепления стенок.
Крепление производится инвентарными щитами.
Площадь креплений стенок:
Sтр1 = 2 х L х h = 2 х 725 х 1,93 = 2798,5 м2
Sтр2 = 2 х 825 х 1,875=3093,75 м2
Sтр3 = 2 х 940 х 1,77 = 33327,6 м2
где, L – длина участка;
h - глубина траншеи;
åSтр = 9219,85 м2
9.4 Технология и организация СМР.
а) Технология СМР.
Подготовительные работы:
До начала производственных строительных работ происходит ознакомление с технической документацией, завоз материала и оборудования. На отведенном под строительство участке с помощью геодезических инструментов производится закрепление высотных отметок, устанавливается положение основных осей и элементов, будущих сооружений в соответствии с проектом. Закрепление положения осей и элементов сооружения на местности производится путем постановки кнопок на асфальтовое покрытии. Для определения высотных отметок будущих сооружений на участке трубопровода устанавливаются временные реперы.
Разбивку трассы трубопровода производят на основании утвержденного проекта в котором положение оси трубопровода в зависимости от условий работ может быть задано расстоянием от постоянных ориентиров, от красных линий, а где они отсутствуют; аналитическим методом. Для разбивки трассы наносят и закрепляют его ось на местности металлическими колышками. Колышки устанавливают на всех углах поворотов трассы, а на прямых участках в приделах видимости разбивочных знаков. Разбивочная схема должна храниться на строительстве до полного его окончания. Перед началом работ получают ордер т.е. разрешение на производство работ.
Чугунные трубы доставляются на строительство автотранспортом и раскладываются вдоль траншеи так, что бы расстояние до них от бровки было не менее 1-1,5 м. и что бы положение их было таким каким оно будет в траншее.
Детали сборных ж/б изделий колодцев и запорная арматура разгружается рядом с будущим колодцем. Доставка трубопровода на строительную площадку производится грузовым автомобилем КРАЗ 325761.
Устанавливаются временные здания и сооружения, производиться расчет прокладка временных трубопроводов водоснабжения и канализации, устройство временного освещения, разработка дорожного покрытия.
Доставка материала на строительство осуществляется автотранспортом, выгрузка происходит непосредственно возле траншеи, рядом с будущим сооружением на расстоянии 1,0 – 2,0 м.
Продолжительность подготовительных работ составляет 10 % от общей продолжительности работ.
Механизированная разработка грунта:
В настоящем проекте разработка грунта траншеи производится с помощью универсального экскаватора ЭО 4121.
Экскаваторы, оборудованные обратной лопатой наиболее часто используют для разработки траншей при строительстве различных трубопроводов. Выбор экскаватора производится в зависимости от глубины и ширины траншеи, от размещения грунта, от грунтовых условий на месте производства работ, а также от сроков строительства по графику. При этом вынутый грунт увозится на автосамосвалах МАЗ 5549
Во время работ экскаватор передвигается вдоль траншеи по ее оси.
Зачистка с удалением грунта выполняется сразу же выбранным экскаватором ЭО 4121. Управление экскаватора осуществляется с помощью полуавтоматической системы что резко снижает затраты физического труда машиниста.
Работы выполняемые вручную:
После механизированной разработки грунта производиться:
n установка креплений;
n рытье приямков
n планировка дна котлована под колодец по визирке. Установка бортовых досок и маячных колышков. Подача материала в котлован. Разравнивание и уплотнение слоя щебня, толщиной 5 мм, с проверкой визирке.
Все грунты за исключением неустойчивых болотистых, лессовидных и скальных могут служить естественным основанием под трубы. Однако необходимо что бы грунт на дне траншей находился в естественном ненарушенном состоянии, а дно траншеи было выбрано под проектную отметку таким образом, что бы каждая уложенная труба на всем своем протяжении плотно прикасалась с грунтом. Если грунт в основании перебран, то необходимо подсыпать основание до проектной отметки песком или щебнем, с тщательным уплотнением.
Работы по монтажу труб и колодцев:
Днище колодцев устраивают до опускания труб. Укладка труб производится при помощи монтажного крана. Затем производится прицентровка к ранее уложенной трубе, стыковка труб. Устройство водонепроницаемого уплотнения стыкового соединения с применение битуминизированной пряди. Устройство асбестоцементного замка. Фасонные части и задвижки расположенные в колодце устанавливаемом одновременно с укладкой труб. Стены колодцев возводят после укладки труб, заделки стыковых соединений, монтажа фасонных частей и запорной арматуры.
Гидроизоляция днища колодцев принимается штукатурная, асфальтовая из горячего асфальтного раствора толщиной 10мм. Наружная гидроизоляция стен, плит перекрытия окрасочная из горячего битума, наносимого несколько слоев(не мене 2), общей толщиной 4-5 мм по грунтовке из битума, растворенного в бензине. На стыках сборных ж/б колец при этом следует наклеивать полосы теплостойкой ткани шириной 20-30 см
Заделка труб в стены колодца должна обеспечивать плотность соединения водонепроницаемость в условиях мокрых грунтов.
Водопроводные колодца предназначаются для установки на узлах водопроводов с рабочим давлением до I мПа. Для определения габаритов колодцев необходимо узнать размеры фасонных частей, а так же размеры и рабочее давление задвижек и пожарных гидрантов. Габариты размеров колодца в плане должны обеспечить свободную замену фасонных частей. Минимальное расстояние от элементов оборудования до внутренних поверхностей колодца принимается по справочнику монтажника таб.54.3 ,где указаны для Æ 400 расстояние:
1.От стенок труб до внутренних стен колодца -0,3 м;
2.От края фланца до внутренней стенки колодца -0,3 м;
3.От маховика задвижки до верхней внутренней стены колодца - 0,4м;
4.От низа трубы до дна колодца - 0,35 м.
Детали колодца:
1.Плита днища КЦД10 -1шт.
2.Плита перекрытия КЦП 10 –1 -1шт.
3.Кольцо стеновое КЦ10 -9 -1шт.
4.Кольцо стеновое КЦ 7 -3 -2шт.
Минимальное расстояние от элементов оборудования до внутренних поверхностей колодцев приняты из условий нормального монтажа и эксплуатации по (3 табл.54.3 ).
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14