Qат = Q2 – Qсис =205,05 – 28,47 = 176,58 МВAp
Q’ат = Qат - 176,58 - ·61,1= 163,02 МВAp
U’2 = U2 - Qат·Xt2 /U2= 500 – 176.58·61,1/500 = 480,08 кВ
Uсн = U’2·220/500 = 220,84 кВ
Рн = 10 МВт
Ратс = Рпс - Рн = 156 – 10 = 146 МВт
Qатс = Ратс· tgφпс =146·tg(arccos(0.96))=42,58 МВAp
Q’нн = Q’ат - Qатс = 163,02 – 42,58 = 120,43 МВAp
Qнн = Q’нн – (Q’нн/ U’2)2· Xtн2 = 113,29 МВAp
Uнн = (U’2 - Q’нн ·Xtн2 /U’2)·(10.5/500) = 9,48 кВ
Для повышения напряжения на низкой стороне ПС установим группу реакторов в конце 1-й линии.
Qат = Q2 – Qсис – 180·(U2/525)2=205,05 – 28,47 – 163,26 = 13,32 МВAp
Q’ат = Qат - 13,32 - ·61,1= 7,33 МВAp
U’2 = U2 - Qат·Xt2 /U2= 500 – 13,32·61,1/500 = 499,1 кВ
Uсн = U’2·220/500 = 229,6 кВ
Q’нн = Q’ат - Qатс = 7,33 – 42,58 = -35,25 МВAp
Qнн = Q’нн – (Q’нн/ U’2)2· Xtн2 = -35,82 МВAp
Uнн = (U’2 - Q’нн ·Xtн2 /U’2)·(10.5/500) = 10,65 кВ
Для выработки необходимой реактивной мощности предполагается установка двух СК типа КСВБО-50-11.
рн = 0,12 ; Кск = 650/100 тыс. руб.; З” = 0.02 тыс. руб./(МВт·ч)
аск = 0,088 ; τ = 4253 час ; ΔРл1 =5,725 МВт
приведенные затраты:
З = (аск + рн)·|Qнн|· Кск + ΔРл1· τ· З” = 542 тыс. руб.
Аналогично определим затраты для различных уровней напряжений, результаты представим в виде таблицы (приложение 4, табл. П4.2).
Как видно из таблицы П4.2 минимум затрат наблюдается при 500 кВ.
Произведём расчёт линии Л – 2. Учитывая посадку напряжения на линии, устанавливаем две группы реакторов 3×РОДЦ – 60.
Рл2 = Pсис - ΔРК2/2 = 140,2 – 3,04/2 = 138,7 МВт
Qp = 180·(U2/525)2 = 180·(500/525)2 = 163,3 МВАр
Q’л2 = Qсис + U22· Y2/2 – 2·Qp = 28,47 + 5002·1,543·10-3/2 – 2·163,3 = -105,2 МВАр
ΔРл2 = = 1,5 МВт
ΔQл2 = 13,85 МВAp
P’сис = Рл2 – ΔРл2 = 138,7 – 1,5 = 137,2 МВт
Q’сис = Q’л2 – ΔQл2 = -105,2 – 13,85 = -119,04 МВАр
Uсис = = 523,9 кВ
Q”сис = Q’сис + Uсис2· Y2/2 = -119,04 + 523,92·1,543·10-3/2 = 93,15 МВAp
сosφсис = cos(arctg) = 0,827
Произведём проверку режима:
1) UННдопmin = 10,45кВ <UНН = 10,65 кВ < UННдопmax=11,55кВ
2) UСН = 229,6≤ UСНдопmax= 253 кВ
3) UГдопmin=14,96 кВ < Uг = 15,16 кВ < UГдопmax=16,54 кВ
cosφгном = 0,97 > cosφгном = 0,85
В качестве послеаварийного режима рассматриваем отключение одной цепи линии Л-1.
При этом по линии Л-1 протекает мощность P0 = 1020 МВт, что больше натуральной мощности линии 500кВ, поэтому принимаем напряжение в начале линии U1 = 1,05∙Uном = 525 кВ; учтём УПК (Х1(УПК) = 0,6·Х1)
Напряжение в конце линии Л-1 принимаем U2 = 500 кВ.
Параметры элементов схемы замещения:
ЛЭП 1: R1 = 15,49 Ом; Х1 = 149,665·0,6 = 89,8 Ом;
Y1 = 2,111·10-3 См ΔРК1 = 8·510/1000 = 4,08 МВт
ЛЭП 2: R2 = 12,155 Ом; Х2 = 114,31 Ом;
Y2 = 1,153·10-3 См ΔРК2 = 8·380/1000 = 3,04 МВт
Трансформатор ГЭС: Хt1 = 89,5/4 = 22,375 Ом
Трансформатор ПС: Хt2 = 61,1/2 = 30,55 Ом ; Хtн2 = 113,5/2 = 56,75 Ом
Z1 = R1 + jX1 = 15,49 + j89,8; |Z1| = 91,1 Ом
Y11 = Y12 = 1/|Z1| = 0.011
α11 = α12 =arcsin(R1/|Z1|) = arcsin(15,49/150,46) = 5.91º
δ1 = 19,86º
Q’л1 = U12· Y11·cos α11 - U1· U2 ·Y11·cos (δ1 - α12) = 144,4 МВар
Qл1 = Q’л1 - U12· Y1/2 = 144,4 – 5252 ·92,11·10-3 /2 = -146,5 МВар
Р’л1 = Р0 - ΔРК/2 = 1020 – 4,08/2 = 1018 МВт
Uг = = = 15,563 кВ
сosφг = =
== 0,998
ΔРл1 = 59,4 МВт
ΔQл1 = 344,4 МВAp
P”л1 = Р’л1 – ΔРл1 = 1018 – 59,4 = 958,6 МВт
Q”л1 = Q’л1 – ΔQл1 = 144,4 – 344,4 = -200 МВАр
Р2 = P”л1 - ΔРК1/2 = 958,6 – 4,08/2 = 956,5 МВт
Q2 = Q”л1 + U22· Y1/2 = -200 + 5002·2,11·10-3 /2 = 63,9 МВAp
Pсис = Р2 – Рпс = 956,5 – 520 = 436,5 МВт
Рат = Рпс = 520 МВт
Примем : Qсис = 100 МВAp
Qат = Q2 – Qсис =63,9 – (-100) = 163,9 МВAp
Q’ат = Qат - 163,9 - ·30,55= 127,5 МВAp
U’2 = U2 – Q’ат·Xt2 /U2= 500 – 127,5·30,55/500 = 492,2 кВ
Uсн = U’2·230/500 = 226,4 кВ
Ратс = Рпс - Рн = 520 – 10 = 510 МВт
Qатс = Ратс· tgφпс =510·tg(arccos(0.96))=148,75 МВAp
Q’нн = Q’ат - Qатс = 127,5 – 148,75 = -21,2 МВAp
Qнн = Q’нн – (Q’нн/ U’2)2· Xtн2 = -21,3 МВAp
Uнн = (U’2 - Q’нн ·Xtн2 /U’2)·(10.5/500) = 10,5 кВ
Произведём расчёт линии Л – 2.
Рл2 = Pсис - ΔРК2/2 = 436,5 – 3,04/2 = 435 МВт
Q’л2 = Qсис + U22· Y2/2 = -100 + 5002·1,543·10-3/2 = 92,9 МВАр
ΔРл2 = = 9,6 МВт
ΔQл2 = 90,5 МВAp
P’сис = Рл2 – ΔРл2 = 435 – 9,6 = 425,4 МВт
Q’сис = Q’л2 – ΔQл2 = 92,9 – 90,5 = 2,4 МВАр
Uсис = = 491,1 кВ
Q”сис = Q’сис + Uсис2· Y2/2 = 2,4 + 491,12·1,543·10-3/2 = 187 МВAp
сosφсис = cos(arctg) = 0,91
1) UННдопmin = 10,45кВ <UНН = 10,5 кВ < UННдопmax=11,55кВ
2) UСН = 226,4≤ UСНдопmax= 253 кВ
3) UГдопmin=14,96 кВ < Uг = 15,56 кВ < UГдопmax=16,54 кВ
4) cosφгном = 0,91 > cosφгном = 0,85
Рассчитанные основные рабочие режимы электропередачи требуют установки УПК 40%, двух синхронных компенсаторов типа КСВБ0-50-11, трех групп реакторов 3∙РОДЦ – 60 в начале линии 1, одной группы реакторов 3∙РОДЦ – 60 в конце линии 1 и двух групп реакторов 3∙РОДЦ – 60 в начале линии 2.
В этом случае линия головного участка электропередачи включена со стороны станции и отключена со стороны промежуточной подстанции. При этом приемная подстанция питается от приемной системы по второму участку электропередачи. Напряжение на шинах подстанции определяется обычным путем, исходя из того, что синхронизация осуществляется в режиме максимальных нагрузок.
Рассчитаем участок электропередачи система – промежуточная подстанция.
Параметры схемы замещения:
Примем Р3 = 1,05·РПС = 546 МВт; Q3 = 0
Uсис = 510 кВ
Р”л2 = P3 - ΔРК2/2 = 546 – 3,04/2 = 544,5 МВт
Q”л2 = U22· Y2/2 = 5002·1,543·10-3/2 = 208,6 МВАр
Определим значение реактивной мощности, при которой напряжение U2 не будет превышать 500 кВ.
Q”л2 =-13,3 МВАр
Устанавливаем в конце второй линии группу реакторов 3·РОДЦ-60
Qp = 180·(Uсис/525)2 = 180·(510/525)2 = 169,8 МВАр
Q”л2 = Q”л2 – Qp = 208,6 – 169,8 = 38,7 МВАр
ΔР”л2 = = 13,9 МВт
ΔQ”л2 = 130.9 МВAp
Р’л2= Р”л2 – ΔР”л2 = 544.5 – 13,9 = 530,6 МВт
Q’л2 = Q”л2 – ΔQ”л2 = 38,7 – 130,9 = -92,2 МВАр
U2 = = 488,3 кВ
Далее проверим напряжения на НН и СН подстанции.
Рат = Р’л2 - ΔРК2/2 = 530,6 – 3,04/2 = 529 МВт
Qат = Q’л2 + U22· Y2/2 = -92,2 + 488,32·1,543·10-3/2 = 91,8 МВАр
Q’ат = Qат - = 54,8 МВАр
U’2 = = 482,5 кВ
Uсн = U’2 ·230/500 = 222 кВ
Ратс = Рат - Рн = 529 – 10 = 519 МВт
Qатс = Ратс· tgφпс =519·tg(arccos(0.96))=151,4 МВAp
Q’нн = Q’ат - Qатс = 54,8 – 151,4 = -96,6 МВAp
Qнн = Q’нн – (Q’нн/ U’2)2· Xtн2 = -98,9 МВAp
Uнн = (U’2 - Q’нн ·Xtн2 /U’2)·(10.5/500) = 10,46 кВ
Оставшийся дефицит реактивной мощности покрывают два синхронных компенсатора установленных ранее.
Uнн = 10,46 < Umaxск = 11,55 кВ.
Следовательно, режим допустим.
Теперь рассчитаем первый участок электропередачи.
Вторая цепь линии Л-1 отключена, на ГЭС в работе 1 генератор и 1 блочный трансформатор.
Для синхронизации необходимо чтобы напряжения на отключённом конце головного участка и на шинах промежуточной подстанции были равны.
U2 = 488,3 кВ
U2 = U1/cos(β0∙L) = 525/ cos(1,111∙10–3∙510) = 622,25 кВ
Для уменьшения напряжения на открытом конце головного участка ставим реакторы в конце головной линии.
Определим необходимое количество этих реакторов:
U1 = 525 кВ
Zc = Ом
β = Im= 1,111·10-3 рад/км
А = cos(β·L1) = 0,844
Аэ = 525/488,3 = 1,075
В = Zc ·sin(β·L1) = 150.45
Yртреб = (Аэ – А)/В = 1,538·10-3 См
Yр = 180/5252 = 6,531·10-4 См
N = Yртреб / Yр = 2,35
Т. о. устанавливаем две группы реакторов 3∙РОДЦ – 60.
Тогда
U2XX = = 504.7 кВ
Что неравно напряжению на шинах промежуточной подстанции, питающейся от системы, поэтому уменьшим напряжение в начале линии за счет регулирования возбуждения генератора станции.
U2XX = = 490 кВ
Что равно напряжению на шинах промежуточной подстанции.
Определим возможность существования такого режима для генератора.
ЛЭП 1: R1 = 15,49 Ом; Х1 = 149,665Ом;
Трансформатор ГЭС: Хt1 = 89,5 Ом
Qp = 180·(U2ХХ/525)2 = 180·(490/525)2 = 147,9 МВАр
Q”л1 =2·Qp - U2ХХ2· Y1/2 =2·147,9 - 4902·2,111·10-3/2 = 56,7 МВАр
Q’л1 =Q”л1 + (Q”л1/U’2XX)2· X1 = 58.9 МВAp
U1 = 510 кВ
Qл1 = Q’л1 – U12· Y1/2 =58,9 - 5102·2,111·10-3/2 = -215,6 МВАр
Для уменьшения Uг ставим в начале головной линии группу реакторов 3∙РОДЦ – 60.
Qл1 = Qл1 + Qp = -215,6 + 147,9 = -67,7 МВАр
Uг = = 15,132 кВ
Qг =Qл1 + (Qл1/U1)2· Xt1 = -66,3 МВAp
Iг = = -2,53 А
Iгном = = 9,531 А
Iг = 2,53 кА < Iг ном = 9,531 кА
Исследуем возможность самовозбуждения генератора.
Хс = (j·Y1/2)-1 = -j947.4 Ом
Хр = j·5252/Qр = j1864 Ом
Z1 = R1 + jX1 + Хс· Хр/( Хс+ Хр) = 15.49 – j1777 Ом
Zвнеш = Z1· Хс /( Z1+ Хс) = 1,87 – j618 Ом
Xd = j·1.31·5002/306 = 1070 Ом
Zвн носит емкостной характер => возможно самовозбуждение генератора.
Т.к. Xd= 1070 Ом < Xвн = 1777 Ом, то рабочая точка не попадает в зону самовозбуждения.
Rвн
X
Рис.2.5. Зоны самовозбуждения генератора
В этом случае линия, через которую осуществляется синхронизация, включена со стороны промежуточной подстанции и отключена со стороны ГЭС.
Рис.2.6. Схема замещения электропередачи в режиме синхронизации на шинах передающей станции
Значения U2, PC берем из предыдущего режима:
U2=488,3 кВ, PCИС=529 МВт
U1хх = U2/cos(β0∙ℓ) = 488,3 /cos(1,111∙10–3∙510) = 568,4 кВ.
Необходимо, чтобы U1хх ≤ 525 кВ.
Для понижения напряжения на холостом конце головного участка ставим там реакторы.
Аэ = 488,3 / 525= 0,914
Yртреб = (Аэ – А)/В = 4,646·10-4 См
N = Yртреб / Yр = 0,7
Т. о. устанавливаем группу реакторов 3∙РОДЦ – 60.
U1XX = = 518,4 кВ
Qp = 180·(U1ХХ/525)2 = 180·(518,4/525)2 = 175,5 МВАр
Q’л1 = U1ХХ2· Y1/2 - Qp =518,42·2,111·10-3/2 – 175,5 = 108,1 МВАр
Q”л1 =Q’л1 - (Q’л1/U1XX)2· X1 = 101,6 МВAp
Q2 = Q”л1 + 488,32· Y1/2 = 101,6 - 488,32·2,111·10-3/2 = 353,3 МВАр
Pсис = Рпс = 529 МВт
Qсис = 91,8 МВAp
Qат = Q2 + Qсис =353,3 + 91,8 = 445,1 МВAp
U’2 = 488,3 – Qат·Xt2 /488,3= 488,3 – 445,1·30,55/488,3 = 459,9 кВ
Установим две группы реакторов 3∙РОДЦ – 60
Qат = Q2 + Qсис - Qp =353,3 + 91,8 – 2·175,5 = 94,2 МВAp
U’2 = 488,3 – Qат·Xt2 /488,3= 488,3 – 94,2·30,55/488,3 = 482,3 кВ
Uсн = U’2·220/500 = 221,8 кВ
Q’ат = Qат - 94,2 - ·30,55= 55,8 МВAp
Ратс = Рпс - Рн = 529 – 10 = 519 МВт
Q’нн = Q’ат - Qатс = 55,8 – 151,4 = -95,5 МВAp
Qнн = Q’нн – (Q’нн/ U’2)2· Xtн2 = -97,8 МВAp
Uнн = (U’2 - Q’нн ·Xtн2 /U’2)·(10.5/500) = 10,49 кВ
Необходима установка двух СК типа КСВБ0-50-11.
Таким образом для обеспечения всех режимов необходима дополнительная установка 9 групп реакторов 9x3xРОДЦ-60/500 и двух синхронных компенсаторов типа КСВБ0-50-11.
Таблица 2.1.
Размещение КУ
Начало линии1
Конец линии1
ПС
Начало линии2
Конец линии2
Режим НБ
3x3xРОДЦ-60/500
2 х КСВБ0-50-11
2 x3xРОДЦ-60/500
Режим НМ
1 x3xРОДЦ-60/500
Режим ПАВ
Синхронизация на шинах ПС
Синхронизация на шинах ГЭС
Выводы: спроектирована электропередача от строящейся ГЭС, мощностью 1020 МВт в энергосистему, имеющую оперативный резерв 320 МВт, с промежуточной подстанцией, мощностью 520 МВт. Было выбрано два варианта электропередачи, удовлетворяющих условиям надежного снабжения электроэнергией потребителей промежуточной подстанции, а так же приемной системы, обеспечиваемых электроэнергией от ГЭС. Для этих двух вариантов выбрали номинальные напряжения и сечения проводов участков электропередачи, схемы электрических соединений передающей станции и промежуточной подстанции. Затем из двух вариантов выбрали первый. Критерием определения рационального варианта является минимум приведенных затрат (З1 = 4800 тыс. руб. З2 = 6139 тыс. руб.). Для выбранной электропередачи рассчитали основные режимы: наибольшей передаваемой мощности, наименьшей передаваемой мощности, послеаварийный. Так же рассчитали режимы синхронизации на шинах промежуточной подстанции и на шинах передающей станции. В результате расчета режимов получили, что для обеспечения всех режимов необходима дополнительная установка 9 групп реакторов 9x3xРОДЦ-60/500 и двух синхронных компенсаторов типа КСВБ0-50-11.
3.1. Анализ исходных данных
Сеть будем проектировать в Западной Сибири. Данному региону соответствует I район по гололёду и II по ветру. Регион находится в умеренном климатическом поясе. Среднегодовое количество осадков от 400 до 1000 мм. Максимальная температура воздуха +43°С, минимальная -37°С. В регионе развиты такие отрасли промышленности как машиностроение, металлургия и металлообработка, легкая, химическая, строительных материалов и пищевая промышленности.
В соответствии с заданием на проектирование развития сети районная электрическая сеть будет обеспечивать шесть пунктов потребителей электроэнергии, которые характеризуются следующими данными:
- в пункте 1 содержится 50% потребителей – I категории, 30% - II категории, 20% - III категории. Коэффициент мощности нагрузки равен 0,91. Пик нагрузки приходится на период времени с 16 до 20 часов и составляет 79 МВт;
- в пункте 2 содержится 70% потребителей – I категории, 20% - II категории, 10% - III категории. Коэффициент мощности нагрузки равен 0,9. Пик нагрузки приходится на период времени с 4 до 12 часов и составляет 33 МВт;
- в пункте 3 содержится 40% потребителей – I категории, 30% - II категории, 30% - III категории. Коэффициент мощности нагрузки равен 0,91. Пик нагрузки приходится на период времени с 8 до 16 часов и составляет 20 МВт;
- в пункте 4 содержится 20% потребителей – I категории, 20% - II категории, 60% - III категории. Коэффициент мощности нагрузки равен 0,92. Пик нагрузки приходится на период времени с 4 до 12 часов и составляет 7 МВт;
- в пункте 5 содержится 10% потребителей – I категории, 40% - II категории, 750% - III категории. Коэффициент мощности нагрузки равен 0,9. Пик нагрузки приходится на период времени с 16 до 20 часов и составляет 11 МВт;
- в пункте 6 содержится 25% потребителей – I категории, 25% - II категории, 50% - III категории. Коэффициент мощности нагрузки равен 0,92. Пик нагрузки приходится на период времени с 8 до 16 часов и составляет 25 МВт.
Во всех пунктах находятся промышленные предприятия и коммунальные потребители, часть потребителей каждого из пунктов относится к I категории электроснабжения, для которых перерыв в электроснабжении допускается только на время автоматического восстановления питания, значит электроприемники должны питаться по двухцепным линиям.
Номинальное напряжение вторичных сетей всех пунктов – 10 кВ.
Источником питания ИП1 является мощная узловая подстанция. Она имеет следующие классы напряжений :220 кВ, 110 кВ и 35 кВ. Рассматриваемая сеть питается от напряжения класса 110 кВ.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11