R
r
E=0
l
n
E
ФЕ = E Sб.п.òdS = E2prl
q = rVЦ = rpR2l = 1/e0 rpR2l
E = (rR2)/(e02r).
q = rpr2l
Ф = E2prl = (1/e0) rpr2l
E = (rr)/(2e0)
Если есть e1 и e2, то e0*e1(2)
1
2
3
1 - e1 > e2;
2 - e1 = e2;
3 - e1 < e2.
14. Поле бесконечного заряженного шара (сферы):
Заряд с поверхностной плотностью g распределен по сфере радиуса R:
g
Е
|E| - const;
ФЕ = SoòEndS = E oòdS = E 4pr2 = = (1/e0) g4pR2
q = g 4pR2
Eнаружн = (gR2)/(e0r2) = q/(4pe0r2)
Eвнутр = 0
Er
~1/r
Заряд с поверхностной плотностью g распределен по шару радиуса R:
Ф = Е 4pr2 = (r/e0) 4/3 pR3
qнаружн = rV = r 4/3 pR3
Eвнутр = (rr)/(3e0e1)
Шар с r(r):
Eнаружн = q/(4pe0e2r2)
dq = r(r’) 4pr’ dr’
r’ – толщина внутреннего слоя;
q = 0òRr(r’) 4pr’2 dr’
Eнаружн = (4p 0òRr(r’) 4pr’2 dr’)/ /(4pe0e2r2); r
Eвнутр = (4p 0òr(r’) 4pr’2 dr’)/ /(4pe0e1r2);
Шар с полостью:
Eнаружн = (4p R1òR2r(r’) 4pr’2 dr’)/ /(4pe0e2r2); r
Eвнутр = (4p R1òr(r’) 4pr’2 dr’)/ /(4pe0e1r2).
15. Потенциал (j):
]$ поле, создаваемое неподвижным точечным зарядом q. ]$ точечный заряд q’, на который действует сила:
F = 1/(4pe0)*(qq’)/r2
Работа, совершаемая над зарядом q’ при перемещении его из одной точки в другую, не зависит от пути
A12 = 1ò2 F(r)dr = (qq’)/(4pe0)r1òr2dr/r2.
Иначе ее можно представить, как убыль потенциальной энергии:
A12 = Wp1 – Wp2.
При сопоставлении формул получаем, что Wp = 1/(4pe0)*(qq’)/r.
Для исследования поля воспользуемся двумя пробными зарядами qПР’ и qПР’’. Очевидно, что в одной и той же точке заряды будут обладать разной энергией Wp’ и Wp’’, но соотношение Wp/qПР будет одинаковым.
j = Wp/qПР = 1/(4pe0)*q/r называется потенциалом поля в данной точке и, как напряженность, используется для описания электрического поля.
]$ поле, создаваемое системой из N точечных зарядов. Работа, совершаемая силами этого поля над зарядом q’, будет равна алгебраической сумме работ, совершаемых каждым из qN над q’ в отдельности:
A = i = 1åNAi, где Ai = = 1/(4pe0)*(qiq’/ri1 - qiq’/ri2), где ri1 - расстояние от заряда qi до начального положения заряда q’, а ri2 – расстояние от qi до конечного положения заряда q’.
Следовательно Wp заряда q’ в поле системы зарядов равна:
Wp = 1/(4pe0)*i = 1åN(qiq’)/ri , то
j = 1/(4pe0)*i = 1åN(qi/ri), следовательно потенциал поля, создаваемого системой зарядов, равен алгебраической сумме потенциалов, создаваемых каждым из зарядов в отдельности.
Заряд q, находящийся в точке с потенциалом j обладает энергией
Wp = qj, то работа сил поля
A12 = Wp1 –Wp2 = q(j1 - j2).
Если заряд из точки с потенциалом j удалять в бесконечность, то A¥ = qj, то j численно равен работе, которую совершают силы поля над единичным положительным зарядом при удалении его из данной точки на бесконечность.
16. Связь между напряженностью и потенциалом:
Электрическое поле можно описать с помощью векторной величины Е и скалярной величины j.
Для заряженной величины, находящейся в электрическом поле:
F = qE, Wp = qj.
Можно написать, что
E = - ¶j/¶x - ¶j/¶y - ¶j/¶z, т.е. при проекции на оси:
Ex = -¶j/¶x, Ey = -¶j/¶y, EZ = -¶j/¶z, аналогично проекция вектора Е на произвольное направление l: Еl = = -¶j/¶l, т.е. скорости убывания потенциала при перемещении вдоль направления l.
j = 1/(4pe0)*q/r = /в трехмерном пространстве/ = 1/(4pe0)*q/Ö(x2+y2+z2).
Частные производные этих функций равны:
¶j/¶x = -q/(4pe0)*x/r3;
¶j/¶y = -q/(4pe0)*y/r3;
¶j/¶z = -q/(4pe0)*z/r3.
При подстановке получаем:
E = 1/(4pe0)*q/r2.
Работа, по перемещению q из точки 1 в точку 2, может быть вычислена, как A12 = 1ò2qEdl или A12 = q(j1 - j2), приравняв их, получим j1 - j2 = 1ò2Edl. При обходе по замкнутому контуру j1 = j2, то получим: oò Edl = 0.
17. Эквипотенциальные поверхности:
Воображаемая поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной. Ее уравнение имеет вид j(x, y, z) = const.
При перемещении по эквипотенциальной поверхности на отрезок dl, dj = 0. Следовательно, касательная к поверхности, составляющая вектор Е, равна 0, т.е. вектор Е направлен по нормали к эквипотенциальной поверхности. Т.е. линии напряженности в каждой точке перпендикулярны к эквипотенциальным поверхностям.
Эквипотенциальную поверхность можно провести через любую точку поля и их можно построить бесконечное множество. Их проводят таким образом, чтобы разность потенциалов для двух соседних поверхностей была одинаковой (Dj = const). Тогда по густоте эквипотенциальных поверхностей можно судить о величине напряженности поля.
В соответствии с характером зависимости Е от r, эквипотенциальные поверхности при приближении к заряду становятся гуще. Для однородного поля эквипотенциальные поверхности представляют собой систему равноотстоящих друг от друга плоскостей, перпендикулярных к направлению поля.
18. Проводники в электрическом поле:
Проводники состоят из связанных зарядов равномерно распределенных по объему проводника. Электроны проводника находятся в тепловом хаотическом движении.
]$ поле с проводником:
() 1
- + Е
- +
- +() 2
-- + Е
+ Е
Напряженность внутри проводника равна 0, т.к. внутри проводника складывается некая суперпозиция напряженностей.
Если j1 - j2 = 0, то поверхность проводника эквипотенциальна, а линии напряженности всегда перпендикулярны эквипотенциальной поверхности.
Возьмем произвольную точку плоскости проводника.
t
j
Возьмем касательную к элементу поверхности t.
dj/dt = -Et, (где dj/dt = 0) вектор Е перпендикулярен плоскости в данной точке.
q
Е = 0
E ~ g
(g - поверхностная плотность)
Заряд распределен по поверхности, Е = 0, распределение неравномерно, максимальную плотность заряд имеет в местах максимальной кривизны.
Обозначим «степень кривизны» за С, то С = 1/R.
E ~ g ~ C ~ 1/R.
19. Электроемкость, конденсаторы:
Электроемкость – коэффициент пропорциональности между зарядом проводника и потенциалом, который заряд приобретает. Зависит от формы проводника и окружающих его тел.
С = q/j.
Электроемкости уединенных проводников (на него ни что не влияет):
Сфера: q
j = 1/(4pe0)*q/R
C = q/j = 4pe0R
R j
Если поместить около сферы другой проводник, то С = Dq/Dj.
-Dq
Dq
E+
X E-
+Dq
Dj - разность потенциалов, возникшая между проводниками.
Если l>>R, то заряд по поверхности каждой сферы распределяется равномерно.
Dj = j1 - j2
j1 - j2 = Ròl-R Edx
E = E+ + E- = k*Dq/x2 + k*Dq/(l-x)2
Конденсаторы:
С = 4pe0R
Плоский:
q+ q- C = Dq/(j1 - j2) =
= (Dqe0S)/(Dqd) =
= e0S/d
j1 - j2 = E*d =
= gd/e = (Dqd)/(e0S)
j1 j2
Сферический:
R1
R2
+q
-q
j1 - j2 = R1òR2E+dr = = Dq/(4pe0) * R1òR2 (1/r2)dr = = Dq/(4pe0)*(1/R1 – 1/R2).
C = (4pe0eR1R2)/(R2-R1).
20. Электрическое поле в диэлектриках:
При помещении в поле диэлектрика в поле происходит изменение. Сам диэлектрик реагирует на поле иначе, чем проводник.
Заряды, входящие в состав молекул диэлектрика, называются связанными. Они не могут покидать пределы молекулы, в которую они входят.
Заряды не входящие как в состав молекул диэлектрика, так и в сам диэлектрик называются сторонними.
Поле в диэлектрике является суперпозицией полей сторонних и связанных зарядов и называется микроскопическим (или истинным).
ЕМИКРО = ЕСТОР + ЕСВЯЗ
Микроскопическое поле в пределах диэлектрика непостоянно, поэтому
Е0 = <ЕМИКРО> = <ЕСТОР> + <ЕСВЯЗ>
<ЕСВЯЗ> = E’
Макроскопическое поле:
E = E0 + E’
При отсутствии диэлектрика макроскопическое поле равно
Е = Е0 = <ЕСТОР>.
Если сторонние заряды неподвижны, то поле ЕМИКРО обладает теми же свойствами, как электростатическое поле в вакууме.
При определении суммарного действия всех электронов имеет значение и центр масс отрицательных зарядов.
®
q- l q+
® ®
r- r+
r- = (i = 1åNriqi-)/( i = 1åNqi-)
r+ = (j = 1åNrjqj+)/( j = 1åNqj+)
Полярные и неполярные молекулы во внешнем поле приводят развороту диполя в направлении поля. Неполярные молекулы приобретают электрический момент. Они поляризуются, от чего возникает дипольный момент, направленный вдоль внешнего поля. Молекула ведет себя как упругий диполь.
21. Диполь в однородном и неоднородном электрических полях:
В однородном поле:
l +q
Fk
M a
Fk (X)-q
M = Fk*l*sina = q*E*l*sina = = P*E*sina, где P – дипольный момент.
® ® ®
M = [P x E]
M – направлен «от нас»
dA = Mda = P*E*sina da
dA = dW ® ®
W = -P E cosa = -(P E)*
* - cкалярное произведение.
В неоднородном поле:
X
-q DX
F-
DF = (F+) – (F-) = q*DE = = q*¶E/¶X*l*cosa = P*¶E/¶X*cosa = = /кроме вращающего момента на диполь действует сила, зависящая от угла a, если угол острый, то диполь «втягивается» внутрь поля/ = = ¶(PEcosa)/¶X = -¶W/¶X.
22. Поляризация диэлектриков:
Р – параметр, описывающий состояние диэлектрика в электрическом поле.
P = (i = 1åNPi)/DV
(-+)(-+) (-+)(-+)
(-+)(-+) (-+)(-+) ®
(-+)(-+) (-+)(-+) Е
На поверхности возникают связанные заряды с плотностью gСВЯЗ.
P = He0E
H – коэффициент диэлектрической восприимчивости;
Е – результирующий вектор.
DS l
® n
P
d
-g +g
P*DV – суммарный дипольный момент молекул внутри цилиндра.
DV = DS*l*cosa
P*DV = P*DS*l*cosa = q*l
q = gСВЯЗ*DS
P*DS*cosa*l = gСВЯЗ*DS*l
P*cosa = gСВЯЗ
gСВЯЗ = He0E, где Е – результирующее поле в диэлектрике.
Е = Е0 + Е’
Внешнее поле должно ослабляться:
® ® ® ® ®
Д = e0Е + Р = e0E + He0E =
Страницы: 1, 2, 3, 4, 5