Недостатки
- высокие затраты на ионообменные смолы и
реагенты;
большие габариты;
сложность технологического процесса.
- трудность в подборе мембран;
высокие капитальные затраты;
малая производительность;
высокие давления и следовательно повышенные требования к надёжности оборудования.
- высокая стоимость ионообменных мембран;
сложная конструкция аппаратов;
необходимость в качественной предочистке;
недостаточно высокое качество получаемой
воды.
- относительно высокий расход энергии;
большие габариты.
Достоинства
- высокое качество получаемой воды;
возможность реализовать установки большой производительности.
- простота конструкции;
малый расход энергии;
независимость от солесодержания исходной
воды;
малые габариты.
- не требует каких либо реагентов;
относительно малые энергетические затраты;
- высокое качество получаемого дистиллята;
простота конструкции;
большая производительность;
низкая себестоимость;
относительно малые капитальные и эксплуатационные затраты;
возможность использования в качестве греющего теплоносителя вторичных энергоресурсов.
Метод деминерализации
1 Ионообменный метод
обработки воды
2 Метод гиперфильтрации
3 Электродиализный метод
4 Дистилляция
Таблица 1 - Сравнительная характеристика наиболее распространённых методов деминерализации
1.2 Выбор типа выпарной установки и их классификация
Процесс выпаривания применяется для достижения различных целей – опреснение воды, разделение смесей, концентрирование растворов и т. д. Отсюда наличие большого числа различных типов и модификаций выпарных установок. Остановимся на опреснительных дистилляционных установках, так как именно они применяются для производства обессоленной (деминерализованной) воды.
Дистилляционные опреснительные установки обладают следующими достоинствами:
1) простотой конструкции;
2) высокой производительностью;
3) хорошим качеством получаемого дистиллята;
4) простотой и высокой надёжностью в эксплуатации;
5) низкой стоимостью получаемой воды;
6) возможностью полной автоматизации процессов;
7) возможностью использования низкопотенциальной теплоты (в том числе и теплоты вторичных энергоресурсов);
8) возможностью многоцелевого использования, включая переработку рассола.
Отталкиваясь от поставленной задачи, в последние годы уделяется большое внимание созданию новых и совершенствованию существующих схем опреснения дистилляцией. Каждая из них характеризуется своими параметрами, схемой организации выпаривания исходной воды, регенерацией теплоты, кратностью концентрирования, связью с циклом технологической установки, конструктивным исполнением, использованием и рядом других признаков.
Классификация современных дистилляционных опреснительных установок может быть проведена по следующим основным признакам:
1) принципу действия – испарительные (поверхностного типа), мгновенного вскипания, с плёночными аппаратами, с промежуточным теплоносителем, контактного типа;
2) гидродинамике режима – с естественной и принудительной циркуляцией исходной воды;
3) способу использования теплоты вторичного пара – с регенерацией и без неё;
4) роду теплоносителей, обогревающих поверхности – с паровым, газовым (горячий газ, продукты сгорания от котлов, печей и других технологических агрегатов), жидкостным (вода, технологические растворы, масло, парафин и др.) и электрическим обогревом;
5) конструктивному исполнению – трубчатые, пластинчатые, спиральные, с ребристой, волнистой и желобообразной поверхностями; вертикальные, горизонтальные и наклонные, одно- и многоступенчатые, однорядные и многорядные, башенного типа;
6) по способу организации движения раствора – проточные и рециркуляционные.
По данным [20] из 664 эксплуатируемых в мире в 1976 году стационарных опреснительных установок 138 были выполнены по схеме с испарением. Дистилляция исходной воды в таких установках протекает путём теплообмена между греющей поверхностью, выполненной в виде трубной змеевиковой батареи, погружённой в большой объём, или прямых трубок с естественным или принудительным движением воды по всему сечению. Процесс парообразования происходит при глубоком вакуумировании всех элементов установки, способствующем снижению накипеобразования.
Позднее была разработана усовершенствованная конструкция опреснительной установки, в которой применены испарительные аппараты с вынесенным кипением и подачей опресняемой воды по прямоточной схеме. В испарительном аппарате подобной конструкции температура поддерживается несколько ниже температуры её кипения в вынесенной зоне, представляющей собой специальный расширитель. Такое решение обеспечивает плавный пуск установки, отсутствие пульсаций, быстрый выход на заданные вакуум и производительность. Установки такого типа работают с устойчивой циркуляцией.
Изучение возможных путей интенсификации процесса теплообмена в опреснительных установках привело к созданию испарительных плёночных аппаратов, с улучшенными массовыми и габаритными характеристиками. Существующие установки такого типа используют вертикально- и горизонтально-трубчатые плёночные теплообменники. Принцип действия испарительных аппаратов таких установок основан на создании различными способами тонкой плёнки опресняемой воды на поверхности нагрева. Организация плёночного движения может достигаться путём струйного орошения поверхности жидкостью, гравитационного её течения или принудительной подачи. Установки, содержащие в своём составе аппараты такого типа, получили название дистилляционных опреснительных установок с испарительными аппаратами с нисходящей или восходящей плёнкой жидкости или испарительными горизонтально-трубчатыми плёночными аппаратами со струйным (напорным) или свободным (безнапорным) орошением теплообменной поверхности.
Находят широкое применение дистилляционные установки контактного типа, в которых теплоноситель непосредственно контактирует с исходной жидкостью без поверхности теплообмена.
К числу дистилляционных опреснительных установок относятся и установки с промежуточным теплоносителем, процесс дистилляции в которых происходит за счёт взаимодействия поступающей на опреснение воды и нагретых до соответствующей температуры углеводородов или их смесей, не вступающих в реакцию с водой и способных в последующем легко разлагаться.
И, наконец, наибольшее количество проектируемых, строящихся и действующих установок используют испарительные устройства, опреснение исходной воды в которых производится по принципу мгновенного вскипания. В таких установках горячая жидкость (речная вода или промышленные стоки) поступают в камеру испарения, где поддерживается низкое давление (вакуум). Вакуум соответствует температуре насыщения, которая несколько ниже температуры поступающей жидкости. За счёт скрытой теплоты парообразования происходит вскипание, как с поверхности жидкости, так и с поверхности струй и капель, образующихся при подводе её в камеру испарения. Над камерой испарения располагается конденсатор-охладитель пара, образовавшегося в процессе мгновенного вскипания. Само название «мгновенное» вскипание свидетельствует о том, что процесс парообразования происходит практически одновременно с поступлением жидкости в камеру испарения. Процесс в испарительной части аппарата протекает адиабатно, без подвода тепла извне. Отсюда название – адиабатная выпарная установка. Установки этого типа характеризуются высокой производительностью, малым накипеобразованием, низкой стоимостью вырабатываемого дистиллята.
Приведём краткие характеристики основных типов выпарных аппаратов.
Таблица 2 - Сравнительные характеристики выпарных аппаратов различного типа.
- чувствительность к изменениям
режима;
повышенное накипеобразование;
высокий температурный
напор поверхности нагрева;
недостаточное использование теплоты;
- большие габариты по высоте;
на поверхности теплообмена образуется
накипь.
- сравнительно высокие затраты на эксплуатацию и обслуживание;
чувствительность к образованию накипи;
чувствительность к изменению эксплуатационных условий.
- большие габариты;
высокая материалоёмкость;
сложность в эксплуатации и автоматизации.
сравнительно сложная конструкция и высокая материалоёмкость;
при непосредственном контакте теплоносителя
с выпариваемым раствором вредные вещества
из первого могут переходить во второй;
в случае использования дымовых газов раствор нельзя нагреть выше точки росы теплоносителя.
высокий коэффициент теплопередачи.
- высокий коэффициент теплопередачи;
обеспечение устойчивой циркуляции;
плавный пуск.
кратковременный контакт жидкости с поверхностью нагрева;
большая удельная паропроизводительность;
- возможность использования в качестве греющего “грязных” теплоносителей.
возможность использования в качестве греющего теплоносителя различных вторичных энергоресурсов (в т.ч. и дымовых газов);
высокая степень концентрирования;
низкий удельный расход теплоты.
Типы выпарных установок
1 Испарительные выпарные установки
1.1 С кипением в объёме камеры
1.2 С вынесенным кипением
2 Плёночные выпарные аппараты
2 Выпарные аппараты
с промежуточным теплоносителем
3 Выпарные аппараты контактного типа
сравнительно высокая материалоёмкость;
необходимость поддерживать вакуум в
системе.
- возможность использования в качестве греющего теплоносителя
низкотемпературных вторичных энергоресурсов;
низкий удельный расход теплоты на единицу испаряемой влаги;
возможность размещения на значительном расстоянии отдельных узлов аппарата;
способностью работать на природных водах любого качества с использованием минимального количества антинакипина;
практически полностью исключают использование реагентов (поваренной соли, щелочи, кислоты).
5 Адиабатные выпарные установки
Анализируя приведённые характеристики, следует отметить, что при всех прочих равных условиях необходимо учитывать и затраты на эксплуатацию установки.
Рассмотрение различных типов технологических схем показывает, что наибольшей тепловой и экономической эффективностью обладают схемы с аппаратами мгновенного вскипания. Это связано в первую очередь с тем, что в качестве греющего теплоносителя здесь может быть использовано “бросовое” тепло, т. е. низкопотенциальные вторичные энергоресурсы. Причём, нижним пределом температуры греющего теплоносителя, которого ещё можно использовать, является 60 – 80 оС. В нашей установке предполагается использовать водяной пар, отработанный в турбинах приводов компрессоров и насосов, с температурой 70 – 80 оС. По капитальным затратам многоступенчатая установка мгновенного вскипания примерно на 20% дешевле установки с плёночными аппаратами [8], а показатель использования греющего пара несколько выше, что характеризуется более высокой допустимой кратностью концентрирования. К тому же, деминерализация в адиабатных выпарных установках признана наиболее перспективным методом создания крупных деминерализационных установок (с производительностью более 10000 м3/сутки), поскольку характеризуются высокой энергетической эффективностью, повышенной компактностью, хорошими эксплуатационными показателями, возможностью практической реализации больших мощностей в одной установке.
Актуальность применения именно установок мгновенного вскипания доказывается ещё и тем, что в последнее время ряд предприятий освоили серийный выпуск подобных аппаратов
1.3 Анализ действующей схемы получения деминерализованной воды на АО “Акрон” и возможностей применения схемы с адиабатной выпарной установкой
По имеющимся на предприятии данным потребность АО “Акрон” в деминерализованной воде составляет примерно 750 м3/час. В настоящее время необходимое количество воды получают в цехе химводоподготовки (ХВП) методом ионного обмена с применением схемы Н-ОН - ионирования. Действующие схемы получения и потребления воды на АО “Акрон” представлены на рисунках 5 и 6.
Имеющаяся схема обеспечивает качественное бесперебойное снабжение производств водой необходимого качества. Согласно регламентам предприятия показатели качества глубоко обессоленной воды (ВГО) составляют:
- PH – 6,0-7,5;
- Жёсткость общая – 0,002 мгэкв/л;
- Удельная электропроводность – не более 1,0 мкСим/см;
- Железо – не более 0,02 мг/л;
- Содержание кремнезема в пересчёте на SiO2 – не более 0,05 мг/л;
- Хлор Cl – отсутствует;
- Окисляемость перманганатная – не более 1,0 мгO2/л;
- Аммиак NH3 – не более 2,0 мг/л.
Надо отметить, что имеющаяся схема подготовки воды предполагает значительные затраты, связанные с необходимостью в ионообменных смолах и химических реагентах для регенерации фильтров. В связи с чем себестоимость обессоленной воды получается достаточно высокой.
В связи с этим возникает потребность в разработке схемы получения деминерализованной воды, которая по своим основным показателям способна служить заменой существующего водоподготовительного комплекса и при этом иметь более низкую себестоимость дистиллята. К основным показателям мы относим производительность, надёжность и качество получаемого дистиллята.
1.4 Выбор схемы установки
В адиабатных выпарных установках деминерализация вод осуществляется путём испарения перегретой жидкости в камере, давление в которой ниже давления насыщения, соответствующего температуре жидкости, поступающей в камеру. Таким образом, процесс испарения происходит не на поверхностях нагрева (как в традиционных выпарных установках), а в объёме камер испарения под вакуумом.
К основным рабочим процессам, происходящим в адиабатных выпарных установках, относятся: вскипание жидкости в камерах испарения, конденсация пара и нагрев жидкости в конденсаторах-регенераторах и головном подогревателе. Осуществляются процессы теплопередачи через поверхность теплообмена. При вскипании жидкости происходит унос капельной влаги, которая отделяется от пара в сепарационном объёме камер испарения и специальных сепараторах. В элементах установки протекают процессы отложения накипи, коррозии.
Для создания вакуума и обеспечения высоких коэффициентов теплопередачи в конденсаторах осуществляется оттяжка неконденсирующихся газов.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12