2.3.5 Определим температуру вторичного пара по ступеням установки tsi с учётом величины физико-химической D1’ , гидростатической D1” и гидродинамической депрессий D1’’’
(2.24)
2.3.5.1 В первой ступени ts1
ts1=tк1-D1’-(D1”-D1’’’)=93,33-0,4-0,4=92,53 оС;
где D1’=0,4 оС – физико-химическая температурная депрессия, вычисленная по формуле на стр. 95 [20] (одинаковая для всех ступеней испарения)
где bср=0,04% - средняя концентрация рассола в установке;
D1”-D1’’’=0,4 оС – сумма гидростатической и гидродинамической депрессий в первом аппарате по рекомендациям [20] на стр. 96.
2.3.5.2 Во второй ступени ts2
ts2=tк2-D2’-(D2”-D2’’’)=86,66-0,4-0,6=85,66 оС;
где D2”-D2’’’=0,6 оС - сумма гидростатической и гидродинамической депрессий во втором аппарате по рекомендациям [20] на стр. 96.
2.3.5.3 В третьей ступени ts3
ts3=tк3-D3’-(D3”-D3’’’)=79,99-0,4-0,8=78,79 оС;
где D3”-D3’’’=0,8 оС - сумма гидростатической и гидродинамической депрессий во втором аппарате по рекомендациям [20] на стр. 96.
2.3.5.4 В четвёртой ступени ts4
ts4=tк4-D4’-(D4”-D4’’’)=73,32-0,4-1,0=71,92 оС;
где D4”-D4’’’=1,0 оС - сумма гидростатической и гидродинамической депрессий во втором аппарате по рекомендациям [20] на стр. 96.
2.3.5.5 В пятой ступени ts5
ts5=tк5-D5’-(D5”-D5’’’)=66,65-0,4-1,2=65,05 оС;
где D5”-D5’’’=1,2 оС - сумма гидростатической и гидродинамической депрессий во втором аппарате по рекомендациям [20] на стр. 96.
2.3.5.6 В шестой ступени ts6
ts6=tк6-D6’-(D6”-D6’’’)=59,98-0,4-1,4=58,18 оС;
где D6”-D6’’’=1,4 оС - сумма гидростатической и гидродинамической депрессий во втором аппарате по рекомендациям [20] на стр. 96.
2.3.5.7 В седьмой ступени ts7
ts7=tк7-D7’-(D7”-D7’’’)=53,31-0,4-1,6=51,31 оС;
где D7”-D7’’’=1,6 оС - сумма гидростатической и гидродинамической депрессий во втором аппарате по рекомендациям [20] на стр. 96.
2.3.5.8 В восьмой ступени ts8
ts8=tк8-D8’-(D8”-D8’’’)=46,64-0,4-1,8=44,44 оС;
где D8”-D8’’’=1,8 оС - сумма гидростатической и гидродинамической депрессий во втором аппарате по рекомендациям [20] на стр. 96.
2.3.5.9 В девятой ступени ts9
ts9=tк9-D9’-(D9”-D9’’’)=39,97-0,4-2,0=37,57 оС;
где D9”-D9’’’=2,0 оС - сумма гидростатической и гидродинамической депрессий во втором аппарате по рекомендациям [20] на стр. 96.
2.3.5.10 Определим среднюю температуру пара на оттяжку, поступающего в конденсатор из теплоиспользующих ступеней tSср1
2.3.5.11 Определим среднюю температуру пара на оттяжку, поступающего в конденсатор из теплоиспользующих ступеней tSср2
2.3.6 Находим количество оборотной воды, необходимое для конденсации паров парогазовой смеси оттяжек в каждом из конденсаторов
2.3.6.1 Количество оборотной воды, подаваемое в конденсатор теплоиспользующих ступеней Gохл1
где rср1=2320,4 кДж/кг – удельная теплота парообразования при средней температуре пара поступающего в конденсатор по таблице 2-1 [18];
Сохл.ср=4,179 кДж/кг´К – теплоёмкость охлаждающей воды при средней температуре по таблице 2-8 [18].
2.3.6.2. Количество охлаждающей воды, подаваемое в конденсатор теплоотводящих ступеней Gохл2
где rср1=2395,8 кДж/кг – удельная теплота парообразования при средней температуре пара поступающего в конденсатор по таблице 2-1 [18];
2.3.7 По температуре насыщения по таблице 2-1 [18] определим удельные теплоты парообразования в каждой ступени ri
r1=2276,8 кДж/кг;
r2=2294,5 кДж/кг;
r3=2311,9 кДж/кг;
r4=2329,0 кДж/кг;
r5=2346,1 кДж/кг;
r6=2362,9 кДж/кг;
r7=2379,5 кДж/кг;
r8=2395,8 кДж/кг;
r9=2406,5 кДж/кг.
2.3.7 Рассмотрим несколько вариантов тепловой схемы установки
2.3.7.1 Первый вариант
2.3.7.1.1 В схеме ступени разделены на два контура: шесть – теплоиспользующие и три – теплоотводящие. Конденсация пара в последних трёх ступенях осуществляется оборотной водой. Кроме того, для снижения расхода охлаждающей воды в седьмую и восьмую ступени заводится рассол из последней ступени испарения, а исходная вода перед подачей на испарение нагревается в теплоотводящих ступенях. Кратность концентрирования в данной схеме принимаем по рекомендациям на стр. 85 [20] a=3.
2.3.7.1.1. По тепловой схеме составляем материальные балансы потоков с учётом известной величины кратности концентрирования
(2.39)
(2.40)
(2.41)
2.3.7.1.2 Из совместного решения уравнений (2.39) и (2.41) находим величину расхода продувочной воды Gпр
2.3.7.1.3 Тогда расход исходной воды Gисх
2.3.7.1.5 Удельная производительность установки по дистилляту d
2.3.7.1.6 Общее солесодержание продувочной воды bк
bк=bисх´a=300´3=900 мг/кг.
2.3.7.1.7 Определим количество охлаждающей воды, необходимое для обеспечения конденсации пара в теплоотводящих ступенях Gохл
2.3.7.1.7.1 Находим количество теплоты, которое необходимо отвести в конденсаторах-пароохладителях каждой из трёх теплоотводящих ступеней
2.3.7.1.7.1.1 Количество теплоты, которое необходимо отвести в седьмой ступени Q7
2.3.7.1.7.1.2 Количество теплоты, отводимое в восьмой ступени Q8
2.3.7.1.7.1.3 Количество теплоты, отводимое в девятой ступени Q9
где Gр=1740 кг/с – расход рассола на выходе из последней камеры испарения;
h’7=192,53 кДж/кг и h’к=167,45 кДж/кг – соответственно энтальпии рассола на выходе из конденсатора-пароохладителя седьмой ступени и на выходе из камеры испарения девятой ступени.
2.3.7.1.7.3 Найдём количество теплоты отбираемое в седьмой и восьмой ступенях исходной водой Qи.в.
где hи.в.’9=147,81 кДж/кг – энтальпия исходной воды при температуре на выходе из девятой ступени tи.в.9=35,3 оС, найденной из условия равного перепада температур между ступенями охлаждения Dtи.в.=(tв7-tисх)/3=(46-30)/3=5,3 оС.
2.3.7.1.7.4 С учётом найденных величин, определим количество оборотной воды, необходимое для полной конденсации пара в седьмой и восьмой ступенях Gохл 7,8, предполагая независимую её подачу в девятую ступень
где Сохл.ср.=4,179 кДж/кг´К – истинная изобарная теплоёмкость охлаждающей воды при средней её температуре tв.ср.=(tохл2+t)/2 =(40+25)/2=32,5 оС во втором контуре установки по таблице 2-4 [18].
2.3.7.1.7.5 Определим количество теплоты, отбираемое исходной водой в девятой ступени Qи.в.9
где hисх’=125,66 кДж/кг– энтальпия исходной воды по таблице 2-1 [18].
2.3.7.1.7.6 Тогда количество оборотной воды, необходимое для конденсации паров в девятой ступени составит Gохл9
2.3.7.1.7.7 Суммарное количество охлаждающей воды, которое необходимо подать в теплоотводящие ступени составит Gохлт
Gохлт=Gохл7,8+Gохл9=1715,6+1601,2=3316,8 кг/с.
2.3.7.1.7.8 Общее количество оборотной воды с учетом охлаждения конденсаторов составит GохлS
GохлS=Gохлт+Gохл1+Gохл2=3316,8+112,1+55,9=3484,8 кг/с.
2.3.7.1.8 Найдём температуру воды на выходе из каждой ступени конденсатора tвi, учитывая, что первые шесть ступеней охлаждаются водой, поступающей на опреснение, а последние три – оборотной водой, циркулирующим рассолом и исходной водой.
2.3.7.1.8.1 Температура охлаждающего рассола на выходе из шестой ступени составляет tв6
где Сср=4,190 кДж/кг – истинная изобарная теплоёмкость воды при средней температуре поступающего на опреснение рассола по таблице 2-4 [18].
2.3.7.1.8.2 Температура охлаждающего рассола на выходе из пятой ступени составляет tв5
2.3.7.1.8.4 Температура рассола на выходе из третей ступени tв3
2.3.7.1.8.5 Температура охлаждающего рассола на выходе из второй ступени tв2
2.3.7.1.8.6 Температура охлаждающего рассола на выходе из первой ступени tв1
где hп’’=2684,1 кДж/кг – энтальпия насыщенного пара, подаваемого в головной подогреватель, при температуре tп=105 оС по таблице 2-1 [18],
hп’=440,17 кДж/кг – энтальпия конденсата при температуре в подогревателе.
2.3.7.1.10 Удельный расход теплоты составит dт
2.3.7.2 Второй вариант
2.3.7.2.1 Схема предполагает последовательное включение по исходной воде всех девяти ступеней. Исходная вода смешивается с циркуляционной и подаётся в конденсатор-пароохладитель девятой ступени.
2.3.7.2.2 Задаваясь температурой воды на входе в первый конденсатор-пароохладитель tвх1=32,5оС по формуле (3-38) [8] найдём величину отношения Gцирк/G
2.3.7.2.3 Тогда расход циркулирующей воды составит Gцирк
Gцирк=0,25*G=0,25*1950,5=487,6 кг/с.
2.3.7.2.4 По материальному балансу схемы определим расход исходной воды Gисх
Gисх=G-Gцирк=1950,5-487,6=1462,9 кг/с.
2.3.7.2.5 Тогда расход продувочной воды составит Gпрод
Gпрод=G-G*(1-Кот)-Gцирк=1950,5-208,3*(1+0,01)-487,6=1252,5 кг/с.
2.3.7.2.5 Кратность концентрирования a
2.3.7.2.6 Общее солесодержание продувочной воды bк
bк=a´bисх=1,2´300=360 мг/кг.
2.3.7.2.7 Кратность циркуляции Кц
2.3.7.2.8 Удельная производительность установки по дистилляту d
2.3.7.2.9 Найдём температуру воды, поступающей на испарение, на выходе из каждой ступени конденсаторов tвi,
2.3.7.2.9.2 Температура воды на выходе из восьмой ступени tв8
2.3.7.2.9.6 Температура воды на выходе из четвёртой ступени tв4
2.3.7.2.9.8 Температура воды на выходе из второй ступени tв2
2.3.7.2.9.9 Температура воды на выходе из первой ступени tв1
2.3.7.2.10 Найдём количество пара, подаваемого в головной подогреватель Gп
hп’=313,94 кДж/кг – энтальпия конденсата при температуре в подогревателе.
2.3.7.2.11 Удельный расход теплоты составит dт
2.3.7.3 Третий вариант схемы, предполагающий последовательно подавать в конденсаторы-пароохладители исходную воду и смешивать её с циркуляционной перед подачей с головной подогреватель, изначально представляется нефункциональным. Это связано с тем, что количество исходной воды оказывается не достаточным для конденсации паров в ступенях установки при любой степени концентрирования.
2.3.8 Результаты расчётов сводим в таблицу 4
Таблица 4 - Сравнительные характеристики вариантов схем
Параметры
Первый вариант
схемы
Второй вариант
1 Расход воды поступающей
на испарение в первую
ступень, кг/с
1950,5
2 Расход исходной воды, кг/с
315,6
1462,9
3 Расход продувочной
воды, кг/с
105,2
1252,5
4 Расход охлаждающей
3484,8
168
5 Кратность циркуляции
6,18
1,33
6 Общее солесодержание
продувочной воды, мг/кг
900
360
2.3.9 Проанализируем полученные результаты:
При использовании первого варианта тепловой схемы потребуется водооборотный цикл с объёмом циркулирующей воды ~ 3320 кг/с или 11940 т/час.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12