380 > 365 А
где: х0 – 0,0602 [2]
Найдём сопротивление рубильника:
РПЦ – 32 – 400
rр = 0,2 мОм
Найдём сопротивление системы:
где: - среднее напряжение; =0.4 кВ.
- мощность короткого замыкания на шинах, от которых питается ТСН, кВА.
Определяем суммарное активное и реактивное сопротивления:
мОм;
мОм.
Найдём периодическую составляющую:
где: z – полное сопротивление цепи короткого замыкания Ом;
Для определения ударного тока и апериодической составляющей тока короткого замыкания определим постоянную времени затухания апериодической составляющей по формуле:
где: результирующее реактивное и активное сопротивление цепи короткого замыкания;
рад/с.
Определим ударный коэффициент:
Апериодическую составляющую тока короткого замыкания определим по формуле:
кА.
Определим ударный ток короткого замыкания.
,
где: - ударный коэффициент.
кА;
Определим полный ток короткого замыкания по формуле:
Глава 3. Проверка токоведущих частей, изоляторов и аппаратуры по результатам расчета токов короткого замыкания
3.1 Расчёт величины теплового импульса для всех РУ
Для проверки аппаратуры и токоведущих частей выполняется расчёт величины теплового импульса для всех РУ по выражению:
кА2×с
где - начальное значение периодической составляющей тока короткого замыкания;
- постоянная времени затухания апериодической составляющей тока короткого замыкания,
.
где - время срабатывания релейной защиты рассматриваемой цепи;
- полное время отключения выключателя.
Результаты расчета оформим в виде таблицы:
Таблица № 7
U, кВ
tа, с
tпв, с
tрз, с
tотк, с
In, кА
, кА2с
вводы
110
0,02
0,055
2,0
2,055
1,388
1,3882(2,055+0,02)
3,998
2х27,5
0,065
1,0
1,065
2,705
2,7052(1,065+0,02)
7,939
10
0,03
0,025
1,025
5,433
5,4332(1,025+0,03)
31,141
фидеры
0,5
0,565
2,7052(0,565+0,02)
4,280
0,525
5,4332(0,525+0,03)
16,382
3.2 Проверка шин и токоведущих элементов
Шины открытых РУ 110 кВ и 2х27,5 кВ выполняют сталеалюминевыми гибкими проводами марки АС.
Проверка гибких шин РУ – 110 кВ и РУ 2х27,5 кВ.
Проверка на термическую стойкость выполняется по формуле:
где: - минимальное сечение, термическое устойчивое при КЗ, мм2
Минимальное сечение, при котором протекание тока КЗ не вызывает нагрев проводника выше допустимой температуры:
где: - величина теплового импульса;
С – константа, значение которой для алюминиевых шин равно 90, .
Проверка по условию отсутствия коронирования
где: E0 – максимальное значение начальной критической напряженности электрического поля, при котором возникает разряд в виде короны, кВ/см,
где: m – коэффициент, учитывающий шероховатость поверхности провода (для многопроволочных проводов m = 0.82);
rпр – радиус провода, см.
E – напряжённость электрического поля около поверхности провода, кВ/см,
где U – линейное напряжение, кВ;
Dср – среднее геометрическое расстояние между проводами фаз, см.
При горизонтальном расположении фаз .
Здесь D – расстояние между соседними фазами, см. Для сборных шин приняты расстояния между проводами разных фаз –1,6 и 3,0 м для напряжений 35 и 110 кВ соответственно.
Вводы и перемычка ТП (110 кВ), тип шин АС – 700 [4] по термической стойкости:
700мм2 > 22,217мм2
по условию отсутствия коронирования
кВ/см;
Вводы ВН понижающего тягового тр-ра(110 кВ), тип шин АС – 120 [4]
по термической стойкости:
120мм2 > 22,217мм2
Вводы ВН районного понижающего тр-ра(110 кВ), тип шин АС – 70 [4]
70мм2 > 22,217мм2
Ввод НН тягового понижающего тр-ра(2х27,5), тип шин АС – 330 [4]
330мм2 > 31,307мм2
Сборные шины НН(2х27,5), тип шин АС – 500 [4]
500мм2 > 31,307мм2
Фидеры контактной сети (2х27,5), тип шин АС – 150 [4]
150мм2 > 22,987мм2
Выбор жестких шин РУ – 10 кВ.
1. Проверка на электродинамическую устойчивость:
где: - механическое напряжение, возникающие в шинах при КЗ
где l – расстояние между соседними опорными изоляторами, м ( РУ - 10 кВ: l = 1м);
а – расстояние между осями шин соседних фаз, м ( РУ - 10 кВ: а = 0.25 м );
iу – ударный ток трёхфазного короткого замыкания, кА;
W – момент сопротивления шины относительно оси, перпендикулярной действию усилия, м3
при расположении шин на ребро:
, м3
при расположении шин плашмя:
где: b и h – толщина и ширина шины, м
Вводы НН районного понижающего тр-ра(10 кВ),, тип шин А - 100´ 8
800мм2 > 62,005мм2
по электродинамической устойчивости:
м3
40 > 8,732 МПа
Сборные шины НН районных потребителей(10 кВ), тип шин А - 60´ 8 по термической стойкости:
600мм2 > 62,005мм2
40 > 2,563 МПа
Фидеры районного потребителя (10 кВ), тип шин А - 20´ 3
60мм2 > 44,972мм2
40 > 34,927 МПа
3.3 Проверка изоляторов
Шины подвешиваются с помощью полимерных подвесных изоляторов. Марки изоляторов и их технические данные представлены в таблице №7 для РУ 110 кВ и РУ 2х27,5 кВ.
Таблица № 8.
Характеристики и марки изоляторов
Номинальное напряжение, кВ
Разрушающая сила при растяжении, кН
Длина пути утечки не менее, мм
Длина изоляционной части, мм
Масса, кг
Строительная высота, мм
ЛК – 120/110
120
2500
1010
3,2
1377
ЛК – 120/35
35
900
370
1,8
597
В РУ – 10 кВ шины крепятся на опорных и проходных изоляторах.
Опорных изоляторах ИО 10 – 3,75 У3
1. по номинальному напряжению: ,
2. по допустимой нагрузке:
где:- разрушающая нагрузка на изгиб изолятора.
где: l – расстояние между соседними опорными изоляторами, м ( РУ – 10 кВ: l = 1м);
а – расстояние между осями шин соседних фаз, м ( РУ – 10 кВ: а = 0,25 м );
225>122,944 даН
Выбор проходных изоляторов: ИП – 10/1600-750 У
1. по номинальному напряжению:
2. по допустимому току:
3. по допустимой нагрузке:
1250>61,472 даН
3.4 Проверка выключателей
Выключатели проверяются:
на электродинамическую стойкость:
где - ударный ток короткого замыкания, кА.
- предельный сквозной ток, кА
на термическую стойкость:
где:- величина теплового импульса в цепи выключателя, кА2×с;
- ток термической стойкости, кА;
- время протекания тока термической стойкости, с.
3. по номинальному току отключения:
где: - периодическая составляющая тока короткого замыкания, кА;
- номинальный ток отключения выключателя, кА;
4. по полному току отключения:
где: - номинальное значение относительного содержания апериодической составляющей в отключаемом токе;
iк – полный ток КЗ;
5. по номинальному току отключения апериодической составляющей тока КЗ:
где: - номинальное нормируемое значение апериодическая составляющая тока короткого замыкания, кА;
где: - время от начала короткого замыкания до расхождения контактов выключателя.
– минимальное время действия релейной защиты, с;
- собственное время отключения выключателя, с.
6. по включающей способности:
где: - номинальный ток включения выключателя:
РУ-110 кВ
Выключатель: РМ – 121 – 20/1200
3,160 < 102 кА
3,998 < 202 3
3,998 < 1200 кА2 с
1,388 < 20 кА
4. по номинальному току отключения апериодической составляющей тока КЗ:
0,342 < 13,010 кА
5. по полному току отключения:
41,295 > 2,305 кА
РУ_2х27,5 кВ
Выключатель: ВГБЭ-35-12,5/1000
6,121 < 32 кА
7,939 < 12,52 3
7,939 < 486,750 кА2 с
2,705 < 12,5 кА
0,313 < 5,816 кА
23,494 > 4,254 кА
Выключатель: ВГБЭ-35-12,5/630
4,280 < 12,52 3
4,280 < 486,750 кА2 с
РУ-10 кВ
Выключатель: ВВ/TEL-10-20/1600
13,215 < 52 кА
31,141 < 202 3
31,141 < 1200 кА2 с
5,433 < 20 кА
3,342 < 16,235 кА
44,519 > 25,677 кА
Выключатель: ВВ/TEL-10-12,5/630 на электродинамическую стойкость:
13,215 < 32 кА
16,382 < 12,52 3
16,382 < 468,75 кА2 с
5,433 < 12,5 кА
3,342 < 10,147 кА
27,825 > 25,677 кА
3.5 Проверка разъединителей
Разъединители проверяются:
Разъединитель РГ-110-2000
3,160 < 100 кА
3,998 402 3 кА2с
3,998 < 4800 кА
Разъединитель РГ-110-1000
3,160 < 80 кА
3,998 31,52 3 кА2с
3,998 < 2976,75 кА
Разъединитель РГ-35-1000
6,121 < 40 кА
7,993 162 3 кА2с
7,993 < 768 кА
Разъединитель РГ-35-2000
13,215 < 80 кА
31,141 31,52 3 кА2с
31,141 < 2976,75 кА
3.6 Проверка заземлителей
Заземлитель ЗР-10 НУЗ
13,215 < 235 кА
31,141 902 1 кА2с
31,141 < 8100 кА
3.7 Проверка предохранителей
ПКТ104-10-100-31,5 У3
Предохранители проверяют по номинальному току отключения:
25,677< 31,5 кА
3.8 Проверка трансформаторов тока
Разработка схем измерений
Схемы измерений необходимы для определения расчетных длин проводов, зависящих от схемы подключения.
Схемы подключения трансформаторов тока
Трансформаторы тока проверяется:
На электродинамическую стойкость:
где: - ударный ток короткого замыкания;
- предельный сквозной ток короткого замыкания;
2. Проверка на термическую стойкость:
где: - тепловой импульс, кА2с;
где: ток термической стойкости, кА;
3. Проверка на соответствие классу точности для номинальной нагрузки:
где: - вторичная нагрузка наиболее нагруженной фазы ТТ, Ом;
- номинальная допустимая нагрузка проверяемой обмотки ТТ в выбранном классе точности, Ом.
Так как индуктивное сопротивление токовых цепей невелико, то:
где: - сопротивление токовых обмоток измерительных приборов и реле, Ом;
- сопротивление контактов: 0,05 Ом – при двух и трёх приборах и 0,1 – при большом числе приборов;
- сопротивление соединительных проводов, Ом.
где: -удельное сопротивление материала провода (с медными жилами – 1.75´10-8 Ом×м; с алюминиевыми жилами – 2,83´10-8 Ом×м);
qпр - сечение проводов, которое не должно быть меньше 4 ´10-6 м2 для алюминия и 2,5 ´10-6 м2 для меди, но не более 10 ´10-6 м2;
- расчётная длина соединительных проводов
Встроенные ТТ на электродинамическую и термическую стойкости не проверяем.
Рабочая перемычка ТП.
Тип ТТ: ТВ – 110 – 1200/5
1. на соответствие классу точности для номинальной нагрузки:
z2 £ z2ном;
z2 = r2 = rприб + rпр + rк;
rприб = ;
Амперметр: Э8021;
Счетчик учета электроэнергии: Альфа
Sприб = Sa + S сч = 1,5 + 0,05 = 1,55 Вт
rприб = = = 0,062 Ом;
rпр = r×= 2,83×10-8×= 0,71 Ом;
r2 = rприб + rпр + rк = 0,062 + 0,71 + 0,05 = 0,822 Ом;
r2ном = = = 2 Ом > r2 = 0,822 Ом;
Ремонтная перемычка ТП.
Тип ТТ: ТГФ-110-1200/5
1. на электродинамическую стойкость:
2. проверка на термическую стойкость:
3,998 < 2700 кА2с
3. на соответствие классу точности для номинальной нагрузки:
Класс точности: 0,5
Амперметр Э8021:
2 > 0,82 Ом
Ввод ВН тягового трансформатора:
Тип ТТ: ТВ – 110– 400/5
Счетчик учета электроэнергии: Альфа:
1 > 0,822 Ом
Ввод ВН районных трансформатора:
Тип ТТ: ТВ – 110– 150/5
Страницы: 1, 2, 3, 4