Рефераты. Электричество и магнетизм







Контрольные вопросы

1.                 Поляризация диэлектриков.

2.                 Электронная теория поляризованного диэлектрика. Диэлектрическая проницаемость и диэлектрическая восприимчивость.

3.                 Сегнетоэлектрики и их свойства.

4.                 Диэлектрический гистерезис в сегнетоэлектриках, петля гистерезиса, точка Кюри.

5.                 Как получить петлю гистерезиса на экране осциллографа.

6.                 Природа сегнетоэлектрических свойств.

7.                 Практическое применение сегнетоэлектриков.

8.                 Описание экспериментальной установки и теория данного метода.


Литература, рекомендуемая к лабораторной работе:

1.                 Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983.

2.                 Калашников С.Г. Электричество. – М.: Наука, 1977.

3.                 Савельев И.В. Курс общей физики. Т.2, Т. 3. – М.: Наука, 1977.

4.                 Телеснин Р.В., Яковлев В.Ф. Курс физики. Электричество.-М.: Просвещение, 1970.

5.                 Сивухин Д.В. Общий курс физики. Т.3. Электричество.- М.: Физматлит МФТИ, 2002.

6.                 Зильберман Г.Е. Электричество и магнетизм. – М.: Наука, 1970.

7.                 Парсел Э. Курс физики Т.2 Электричество и магнетизм – М.: Наука, 1971.

8.                 Рублев Ю.В., Куценко А.Н., Кортнев А.В. Практикум по электричеству. – М.: Высшая школа, 1971.

9.                 Кортнев А.В., Рублев Ю.В., Куценко А.Н.. Практикум по физике. – М.: Высшая школа, 1965.

10.            Руководство к лабораторным занятиям по физике. Под редакцией Л.Л. Гольдина, - М.: Наука, 1983.

ЛАБОРАТОРНАЯ РАБОТА № 10

ИЗУЧЕНИЕ  МАГНИТНЫХ ПОЛЕЙ

Цель работы:

Ознакомление с основными количественными характеристиками магнитных полей и методами их измерения. Определение горизонтальной составляющей индукции магнитного поля Земли с помощью тангенс- гальванометра.

Идея эксперимента:

В случае простейших конфигураций (прямой ток, тороид, бесконечной длины  соленоид) значение напряженности магнитного поля легко находится с помощью теоремы о циркуляции Н, в более сложных случаях (соленоид конечной длины и др.) расчет Н затруднителен. Поэтому в ряде случаев удобнее экспериментально определить В, а затем рассчитать Н. Величину магнитной индукции В можно измерить различными способами или непосредственно прибором, называемым  тесламетром (рис 4.)

Теоретическая часть

Экспериментально установлено, что в пространстве, окружающем токи и постоянные магниты,  возникает силовое поле,  называемое магнитным. Наличие магнитного поля обнаруживается по силовому действию на внесенные в него проводники с током или постоянные магниты.  Магнитное поле в данной точке может быть охарактеризовано вектором магнитной индукции В и вектором напряженности Н, которые связаны соотношением

В= μμ0Н                                                            

где  μ0= 4π· 10-7   Гн/м  - магнитная постоянная,  μ – магнитная проницаемость вещества, показывающая во сколько раз магнитная индукция в данной среде больше магнитной индукции  в вакууме.

         Магнитное поле обладает следующими свойствами:

·        магнитное поле действует только на движущиеся в этом поле электрические заряды:

·        магнитное поле подчиняется принципу суперпозиции   В=∑Вi

·        магнитное поле является вихревым, т.е. линии магнитной индукции всегда замкнуты и охватывают проводники с током.

Количественно магнитные поля  можно рассчитать по закону Био-Савара-Лапласа:

,

где I  - сила тока, dlвектор, по модулю равный длине элемента проводника и совпадающий по направлению с током, rрадиус вектор, проведенный из элемента проводника dl в точку поля, в которой определяется  В.

 Магнетизм Земли.

экватор

 
 Земля представляет собой огромный шаровой магнит. Хотя магнетизм Земли в течение уже нескольких тысячелетий использовался для определения сторон света с помощью магнитных стрелок, лишь в 1600 г. Уильям Гильберт научно доказал, что Землямагнитный диполь. Строгую теорию геомагнетизма и методы магнитных измерений разработали в 30-е годы XIX века Карл Гаусс и Вильгельм Вебер.

В любой точке пространства, окружающего Землю, обнаруживается действие магнитных сил. Форма силовых линий магнитного поля Земли показана на рис.1 Северный магнитный полюс Земли находится в южном полушарии и имеет координаты 78° ю. ш. и 111° в. д., а южный магнитный полюс располагается в северном полушарии и имеет координаты 78° с. ш. и 69° з. д.. Эти значения непостоянны, так как со временем магнитные полюсы и ось меняют своё положение. Из сказанного следует, что магнитные полюса планеты смещены относительно географических полюсов более чем на 2000 км каждый. Это расстояние с годами возрастает по неизвестным науке причинам (в 1600 году оно составляло всего 1300 км).

Угол между горизонтальной составляющей вектора В и плоскостью географического меридиана называется магнитным склонением α и измеряется при помощи деклинаторов. В результате неоднородности земного магнитного поля его вектор индукции на экваторе направлен строго горизонтально, на магнитных полюсах – вертикально, а на всех остальных широтах – под некоторым углом к горизонту. Этот угол называется магнитным наклонением θ, которое измеряется посредством инклинаторов.  Существование магнитного наклонения приводит к тому, что северный полюс магнитной стрелки, подвешенной в северном полушарии, располагается несколько ниже южного полюса, а в южном полушарии – наоборот (на глаз это незаметно). Такую ориентацию можно описать векторной суммой горизонтальной и вертикальной составляющих вектора индукции магнитного поля Земли (рис. 2). Вертикальную составляющую этого поля измеряют при помощи упомянутого выше инклинатора, а горизонтальную – при помощи тангенс-гальванометра. В стрелочном инклинаторе главной частью является магнитная стрелка с горизонтальной осью, проходящей через  центр тяжести стрелки. Если вертикальную плоскость качания стрелки совместить с плоскостью магнитного меридиана, магнитная ось стрелки устанавливается по направлению вектора напряженности магнитного поля. Магнитное наклонение отсчитывается по вертикальному кругу с делениями. Более точные индукционные инклинаторы позволяют измерить наклонение с точностью до 0,1΄. В таком приборе индукционная катушка вращается вокруг оси, лежащей в плоскости ее витков. Прибор дает возможность ориентировать ось в любом направлении. Если она не совпадает с вектором напряженности магнитного поля Земли, то магнитный поток сквозь контур катушки при ее вращении меняется,  и в ней индуцируется эдс. При совпадении оси вращения с направлением вектора напряженности поток сквозь ее контур остается постоянным, эдс не индуцируется, и включенный в цепь катушки чувствительный гальванометр не дает отклонений. Угол между горизонтальной плоскостью и осью катушки при отсутствии отклонений в гальванометре отсчитывается по вертикальному кругу, соединенному с осью катушки. Точные измерения показали, что в настоящее время горизонтальная составляющая вектора магнитной индукции B на поверхности планеты принимает значения от 0 до 41 мкТл, а полный вектор индукции B0 изменяется в пределах от +62 до –73 мкТл.

 Магнитное поле Земли меняется и во времени. В настоящее время магнитное поле планеты убывает примерно на 1% каждые 10 лет.

Экспериментальная установка


Тангенс-гальванометр представляет собой короткую катушку большого диаметра, точно в центре которой располагается буссоль (компас). Размеры стрелки буссоли должны быть очень малы, что позволяет считать величину магнитного поля тока, действующего на концы стрелки, равной величине поля в центре кругового тока. По этой же причине катушка прибора должна быть как можно короче и как можно большего диаметра. Обмотка катушки представляет собой определённое число N витков медного провода и несколько отводов, сделанных через равное количество витков. Каждый отвод припаивается к отдельному гнезду на панели прибора, рядом с которым указывается соответствующее число витков. Перед началом измерений плоскость катушки тангенс-гальванометра располагают в плоскости магнитного меридиана планеты, после чего по обмотке прибора пропускают электрический ток. В результате стрелка оказывается под воздействием одновременно двух взаимно перпендикулярных полей: горизонтальной составляющей магнитного поля Земли Вг и поля ВI кругового тока катушки тангенс-гальванометра. При этом стрелка буссоли устанавливается вдоль вектора магнитной индукции результирующего поля.

.

Отсюда:

.                                             (1)

Если катушка прибора содержит n витков, то индукция магнитного поля тока в центре катушки может быть определена по формуле:

,                                                      (2)

где R – радиус катушки тангенс-гальванометра. Таким образом, с учётом (1) и (2), получаем:

.                                                    (3)

Относительная погрешность определения величины Вг по формуле (3) определяется суммой:

.                                    (4)

Таким образом, измерения горизонтальной составляющей магнитного поля Земли целесообразно производить при α = 45°, так как в  этом случае, согласно (4), ошибка, связанная с неточностью определения угла α, будет минимальной. При этом выражение (3) упрощается:

.                                                 (5)

Проведение эксперимента

Определение горизонтальной составляющей магнитного поля Земли.

1.                 Соберите цепь по схеме, указанной на рис. 3.

2.                 Включите в цепь  витков катушки и установите её в плоскости земного меридиана.

3.                 Включите источник питания, с помощью реостата, установите ток в цепи катушки такой величины , чтобы стрелка буссоли отклонилась на угол 45°.

4.                 При помощи переключателя П измените направление тока на противоположное и, откорректировав положение стрелки буссоли на угол 45°, измерьте силу  тока в цепи.

5.                 Найдите среднее значение величин  и : .

6.                 Рассчитайте величину горизонтальной составляющей индукции магнитного поля планеты.

7.                 Повторите все измерения, включая в цепь числа витков  и .

8.                 Рассчитайте среднее значение горизонтальной составляющей индукции магнитного поля Земли по формуле 5 и сравните полученный результат с табличным.

9.                 Вычислите предельную относительную погрешность величины Вг по формуле 4 и абсолютную погрешность по формуле  . При этом погрешность в определении тока определяется по классу точности прибора, а погрешность в определении радиуса катушки и угла α оценивается экспериментатором самостоятельно.

10.            Результаты измерений и вычислений занесите в таблицу 1.


Таблица 1

n

I+, А

I-, А

Icр, А

Вi, Тл

Вср, Тл

ε

∆В, Тл




























Измерение магнитного поля соленоида тесламетром

1.      Включить в сеть измеритель магнитной индукции (тесламетр, рис. 4). При необходимости провести установку нуля тесламетра.

2.      Подать на обмотку соленоида ток  I1 = 5 – 7 А от источника постоянного тока.

3.      Произвести измерения магнитной индукции В при помощи длинного щупа тесламетра поля в разных точках поля внутри и вне соленоида, перемещая датчик от нижнего края соленоида вверх.

4.      Построить график зависимости Вэксп. (х), где х – расстояние от нижнего края соленоида до исследуемой точки, измеренное по шкале щупа..

5.      На полученном графике построить в том же масштабе теоретическую кривую зависимости Втеор. (х) , пользуясь следующей расчетной формулой:      , где  - длина соленоида, х- расстояние от края соленоида до  исследуемой точки, R- радиус соленоида , n -  число витков на единицу длины соленоида .

6.      Исследовать зависимость индукции поля  внутри соленоида от силы тока в обмотке (вблизи середины соленоида) и построить график зависимости Вэксп.(I).

7.      В том же масштабе построить теоретическую кривую  Bтеор.(I), рассчитав В по выше приведенной формуле.

Измерение магнитного поля между полюсами электромагнита

1.      Подать на электромагнит ток  от источника постоянного тока.

2.      Произвести измерения индукции магнитного поля между полюсами  электромагнита, используя короткий щуп тесламетра, начиная от верхнего края катушек.

3.      Построить график зависимости В(х), где х – расстояние от верхнего края катушек до данной точки.


Контрольные вопросы

 

1.                 Что такое магнитное поле, его характеристики (напряженность, магнитная индукция).

2.                 Линии напряженности магнитного поля и его вихревой характер.

3.                 Закон Био-Савара-Лапласа, магнитная постоянная.

4.                 Напряженность магнитного поля в центре кругового тока, прямого тока и бесконечного соленоида.

5.                 Магнитное поле движущегося заряда.

6.                 Взаимодействие электрических токов.

7.                 Магнетизм Земли.

8.                 Экспериментальная установка и методика проведения эксперимента.

 

Литература, рекомендуемая к лабораторной работе:

 

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.