Основным блоком СВЧ является генератор СВЧ, включающий в себя генераторную головку, стабилизатор напряжения и вентиль.
Генераторная головка выполнена на диоде Гана, генерирующем в диапазоне частот от 5,6 до 12,05 Ггц.
В качестве перестраиваемого высокодобротного контура генератора используется сфера из монокристалла феррита с двумя витками связи, помещенными в поле тороидального электромагнита.
Перестройка частоты генератора в широком диапазоне осуществляется изменением величины магнитного поля, создаваемого электромагнитом при изменении величины тока, протекающего в его катушке.
Зависимость между величиной магнитного поля, а следовательно и между величиной тока, протекающего по катушке электромагнита с частотой генерации прямопропорциональная.
Стабилизатор напряжения предназначен для подачи на диод Ганна напряжения смещения, преобразованного из напряжения постоянного тока (12,6 В) и управляющего напряжения (0-10 В).С целью улучшения амплитудно-частотной характеристики требуется устанавливать оптимальное значение напряжения смещения, линейно падающее от -15 до -6 В, что и обеспечивается управляемым стабилизатором напряжения. Для исключения влияния внешней цепи СВЧ тракта на режим генерации на выходе генераторных головок установлен развязывающий вентиль. На выходе генератора СВЧ установлены фильтры нижних частот, ограничивающие прохождение гармоник.
Вентиль в волноводном тракте не используется, так как направленный ответвитель имеет высокую степень направленности и исключает распространение волны в обратном направлении. Распределение поля, рассматриваемое как функция частоты (Рис. 3.4), где 1- режим бегущей волны, 2- режим стоячей волны.
В качестве регистрирующего элемента использовался Индикатор КСВН и ослабления Р2-67.
Индикатор КСВН и ослабления Я2Р-67 предназначен для использования в составе панорамных измерителей КСВН и ослабления.
Рабочая частота измеряемого сигнала 100±1 кГц. Уход уровня калибровки при изменении частоты в пределах 100 ± 1 кГц не более ± 0,05 дБ.
Пределы измерения ослабления от 0 до минус 35 дБ, пределы измерения КСВН --от 1,035 до 5.
Пределы индикации ослабления -- от 0 до минус 40 дБ.
Пределы индикации КСВН — от 1,02 до °°.
Несоответствие шкал КСВН линейной шкале dB не более ±0,05 дБ в пределах, соответствующих рабочему участку шкалы dB от минус 5 дБ до плюс 2 дБ.
Погрешность измерения ослабления в логарифмическом масштабе в пределах шкалы от 0 до -30 дБ в децибелах не превышает величины, определяемой по формуле
6А= ±(0,1 | А,
Диапазон входных напряжений канала падающей волны 0,03—10 мВ. При этом уровень напряжения в канале отраженной волны должен быть не менее 1 мкВ.
Уход показаний индикатора при изменении уровня входного сигнала во всем диапазоне входных напряжений канала падающей волны не более ±0,2 дБ, а в положении переключателя ПРЕДЕЛЫ 30 не более ±0,3 дБ.
Входное сопротивление усилителей каналов падающей и отраженной волн на частоте 100 кГц составляет 2,7±0,75 кОм.
Сопротивление входа горизонтальной развертки постоянному току 4,7±1,2 кОм.
Погрешность измерения напряжения канала падающей волны в пределах от 0,4 до 10,0 мВ не более 15%.
Усиление напряжения падающей волны для системы АРМ не менее 15 раз.
Пределы измерения ослабления от 0 до -35 дБ, пределы измерения КСВН от 1,035 до 5. Пределы индикации ослабления от 0 до -40 дБ.
Пределы индикации КСВН — от 1,02 до ¥.
В основу построения структурной схемы панорамного измерителя КСВН и ослабления положен принцип раздельного выделения и непосредственного детектирования сигналов падающей и отраженной волн. Способ раздельного выделения падающей и отраженной волн заключается в следующем.
Сигнал, пропорциональный мощности, падающей на нагрузку, выделяется направленным ответвителем (или мостовым рефлектометром) падающей волны. Сигнал, отраженный от исследуемой нагрузки, выделяется направленным ответвителем (или мостовым рефлектометром) отраженной волны.
СВЧ сигнал, поступающий на исследуемую нагрузку, промодулирован частотой 100 кГц. Ввиду этого, на выходах детекторов, детектирующих сигналы, пропорциональные мощности отраженной и падающей волн, имеется напряжение частотой 100 кГц. Эти напряжения используются в индикаторе для определения измеряемой величины.
Из принципа работы всего комплекса следует, что в индикаторе должно осуществляться усиление напряжений падающей и отраженной волн -(на частоте модуляции СВЧ сигнала), деление их, детектирование, визуальная индикация на экране ЭЛТ и непосредственный отсчет по шкальному устройству. Кроме того, в индикаторе имеются схемы, обеспечивающие логарифмический режим работы, компенсацию неидентичности частотных характеристик СВЧ трактов, индикацию частотой метки, а также выдачи управляющих сигналов при работе с цифровым блоком.
На вход индикатора подавался сигнал, снимаемый либо с направленного ответвителя, либо с детекторной головки измерительной линии в зависимости от задачи исследования. Поскольку в индикаторе производится автоматическая нормировка сигнала, для получения опорного сигнала применялась детекторная секция на входе в направленный ответвитель.
Мощность вводилась в систему через направленный ответвитель, который являлся составляющим элементом кольцевой системы.
Вентиль в волноводном тракте не используется, так как направленный ответвитель имеет высокую степень направленности и исключает распространение волны в обратном направлении. Распределение поля, рассматриваемое как функция частоты, где 1- режим бегущей волны, 2- режим стоячей волны.
Рисунок 3.3 Распределение амплитуды поля, как функция частоты
На рисунке 3.4 представлена осциллограмма с экрана индикатора, на которой показана картина распределения амплитуды поля по частоте в обоих режимах. Видно, что интервал между соседними максимумами уменьшается ( их число возрастает вдвое) и одновременно падает амплитуда в максимуме, что свидетельствует об уменьшении добротности в режиме стоячих волн.
Рисунок 3.4 Распределение поля, как функция частоты (1- режим бегущей волны, 2- режим стоячей волны)
Контроль режима осуществлялся при помощи измерительной линии, включенной в состав волноводного кольца. На рис 3.8 и 3.9 соответственно представлены частотные зависимости КСВН в волноводном кольце в обоих режимах. Очевидно, что на высоких частотах ( выше 6,5 ГГц), что обусловлено сечением волновода, режим с большой достоверностью можно считать режимом бегущей волны, т.к. значение КСВН для этих частот не превышает 1,8, в то время, как в режиме стоячей волны в этом диапазоне КСВН > 2×102.
3.3 Метод измерения коэффициента отражения
Задача измерения больших коэффициентов отражения актуальна при определении параметров короткозамкнутых нагрузок в волноводных трактах. Особенностью подобных измерений является большой динамический диапазон измеряемых величин, что затрудняет использование методов, связанных с применением измерительной линии ввиду сложности процедуры обеспечения квадратичности характеристики детектора в требуемом диапазоне. В настоящей работе теоретически и экспериментально обоснована методика измерения больших коэффициентов отражения на основе применения кольцевого резонатора бегущей волны.
При широкодиапазонном возбуждении такого резонатора генератором качающейся частоты наблюдается чередование максимумов и минимумов амплитуды СВЧ-поля, как функция частоты возбуждения. Нетрудно показать, что соответствующие значения амплитуд определяются собственным затуханием линии α. Действительно, амплитуда в максимуме поля определяется, как результат интерференции волн, которые совершили целое число “оборотов” в кольцевой системе.
Е=
Так-как в максимуме поля j= 2kp. А в минимуме j= (2k+1)p/2, то
Емакс= Е0(1-e-α)-1
Емин= Е0(1+e-α)-
1
Если внести в кольцевую систему короткозамкнутую нагрузку, то её можно рассматривать, как отрезок короткозамкнутой линии, в которой установится режим стоячей волны в полном соответствии с рассмотренным во второй главе материалом. Тогда амплитуда поля в максимумах и минимумах аналогично рассмотренному выше для режима бегущих волн с учетом коэффициента отражения от обоих поверхностей представима в виде:
Емакс= Е0(1-Гe-α)-1,
Емин= Е0(1+Гe-α)-1.
Очевидно, что, исключив из уравнений параметры собственного затухания линии, можно определить модуль коэффициент отражения нагрузки Г.
3.4 Реактивная нагрузка в линии
Известно, что внедрение диафрагмы в волновод эквивалентно включению в состав тракта реактивной нагрузки, характер которой определяется ориентацией диафрагмы относительно широкой стенки волновода. Данное обстоятельство позволяет судить о перспективности внедрения отражающей плоскости в кольцевой резонатор бегущей волны с целью его настройки – изменения. На рисунеке приведены осциллограммы частотной зависимости амплитуды поля при введении в зазор кольцевой системы диафрагмы ножевого типа.
Рисунок 3.5 Осциллограмма частотной зависимости амплитуды поля
Более высокие максимумы соответствуют режиму бегущей волны (а), низкие – дополнительные максимумы (б и в), возникающие при введении диафрагмы. Смещение начальных максимумов имеет место, однако составляет незначительную величину, в то время, как смещение побочных максимумов весьма значительно. На рисунке - б представлен случай введения диафрагмы параллельно широкой стенке, а на рисунке в – для случая введения диафрагмы параллельно узкой стенке. Очевидно, что в первом случае частота резонанса сдвигается в сторону низких частот, которые на осциллограмме слева, а во втором – в сторону высоких частот. При полном введении диафрагмы количество максимумов удваивается, и положения обоих добавочных максимумов совпадают. Таким образом, оказывается возможной настройка резонатора бегущей волны на любую частоту. Возможно также введение в волноводное кольцо диафрагмы, ножевая поверхность которой ориентирована перпендикулярно диагонали сечения волновода. В этом случае сопротивление носит чисто активный характер и влияет только на добротность резонатора.
Отмеченное свойство диафрагмы в кольцевой системе позволяет судить о возможности её применения не только для настройки резонатора, но и для целей согласования. Она может быть использована в качестве трансформатора сопротивления в волноводном тракте, в том числе – и в случае реактивной нагрузки для компенсации индуктивной либо емкостной составляющей. На представленных ниже зависимостях видно, что смещение начального максимума пренебрежимо мало и не превышает 5 МГц на основной частоте 7 ГГц.
3.5 Проверка аппаратной функции
При проведении измерений на установке данного типа появилась возможность определения зависимости и проверки аппаратной функции прибора измерения (Генератор качающейся частоты и индикатор КСВН и ослабления) в режиме бегущих волн. Аппаратная функция это закон по которому проходит измерение и изменение каких- либо параметров на конкретной установке, т. е. в нашем случае функция отклика системы на внешнее воздействие.
Для проведения эксперимента в нашу установку, в одно из плеч волноводноготракта был внедрен атенюатор поляризационного типа. Который осуществлял ослабление сигнала СВЧ . Измерения проводились на двух частотах: F1 = 8.355 Гц и F2 = 7.848 Гц. На установке регистрировались значения минимумов αmin(A) и максимумов αmax(A) при введении ослабления от 0 дБ до 10 дБ . Данные измерений приведены в таблице №1 и №2. Далее по этим измерениям были построены графики зависимости относительной величина Ат (отн.ед.) от ослабления аттенюатора A (дБ) в интервалах [0;1] и [0;10]. В ходе анализа графиков выяснилось, что с учетом погрешностей измерения и потерь, наблюдаемая нами зависимость практически линейна. Следовательно и линейна аппаратная функция установки .
A (дБ) – показания ослабления аттенюатора .
αmax(A) – положение максимума при заданной величине ослаблении.
αmin(A) – положение минимума при заданной величине ослаблении.
Ат (отн.ед.) – теоритическое значение величины ослабления.
Таблица данных №1.
F1 = 8.355 Гц
A (дБ)
Ат (отн.ед.)
αmax(A)
αmin(A)
0
0,489
5,10
1,225
1,052
2,50
1,210
2
1,479
1,90
1,195
3
1,876
1,60
1,175
4
2,057
1,50
1,160
5
2,645
1,32
1,145
6
3,206
1,22
1,125
7
3,358
1,19
1,110
8
3,637
1,17
9
3,709
1,15
1,095
10
4,016
1,13
1,090
F2 = 7.848 Гц
Таблица данных №2.
F1 = 7,848 Гц
1,396
1,840
1,515
1,100
2,260
1,350
2,573
1,270
2,868
1,080
3,218
1,170
3,376
1,135
1,060
3,770
4,272
4,672
4,663
1,070
1,050
Заключение
В работе экспериментально исследовалась частотная характеристика кольцевых (замкнутых) систем СВЧ - диапазона в режиме бегущих и стоячих волн. Показано, что в обоих случаях частотная зависимость является квазипериодической, причем, количество максимумов на ограниченном интервале для режима бегущих волн вдвое меньше, чем для режима стоячих волн. Экспериментально установлено, что добротность системы в режиме бегущих волн выше (примерно вдвое для рассматривавшейся системы), чем в режиме стоячих волн. На основании проделанных расчетов и экспериментальных исследований предложена методика (способ) определения больших коэффициентов отражения, что является актуальным для контроля качества короткозамыкателей СВЧ. Проведено практическое апробирование предложенной методики на образцах из различных материалов и получены частотные зависимости их коэффициента отражения в диапазоне от 6ГГц до 8,5 ГГц.
Исследовано влияние диафрагмирования волноводного кольца на характер частотной зависимости амплитуды волны в системе. Показано существенное влияние ориентация вводимой диафрагмы ножевого типа относительно широкой стенки волновода на положение максимумов амплитуды. Характер нагрузки при изменении положения диафрагмы изменяется от емкостного до индуктивного, а модуль сопротивления – от нуля до бесконечности, что позволяет производить перенастройку резонатора бегущей волны на любую частоту из рабочего диапазона, переходя от режима бегущих волн к режиму стоячих волн через режим смешанных волн. Проделанное экспериментальное исследование позволяет судить о перспективности использования режима бегущих волн в резонаторах СВЧ системах, по сравнению с традиционно применяющимися резонаторами, использующие стоячую волну.
Список использованных источников
1. Гуреев А.В.// Радиотехника и электроника (Москва).- 1994 -39 №6.- С.929-936
Страницы: 1, 2, 3, 4, 5