Рефераты. Электроснабжение механического завода местной промышленности







Теперь определим показатели надежности для схемы с выключателями на стороне высшего напряжения (рис. 9б).

Показатели надежности элементов схемы представлены в таблице 12.

Так как, рациональным напряжением питания было выбрано 110 кВ, то берут из таблицы 1 параметры элементов с номинальным напряжением 110 кВ. На низкой стороне подстанции рациональное напряжение будет определено технико-экономическим сравнением в расчете системы распределения. Учитывая, что показатели надежности элементов СЭС на напряжение 6 и 10 кВ одинаковы, то на данном этапе ограничиваются указанием возможных вариантов напряжения системы распределения.

Таблица 12

Показатели надежности элементов СЭС

№ элемента на расчетной схеме

Элементы

wа,

(1/год)

Т х 10-3, (год)

wр,

(1/год)

tр х 10-3,

(год)

ИП1, ИП2

Источники питания предприятия

0

-

-

-

1, 3, 5, 7

Разъединитель 110 кВ

0,008

1,712

-

-

2, 6

Ячейка с воздушным выклю-чателем 110 кВ

0,18

1,256

0,67

2,28

4, 8

Трансформатор силовой 110/6-10

0,01

20,55

1,00

2,28

9, 10, 11, 12

Ячейка масляного выключателя 6,10 кВ

0,035

0,26

0,67

0,91

13, 14, 15, 16

Отходящая линия 6,10 кВ при развитии отказов

0,012

0,114

-

-

-

Комплект АВР 6,10 кВ:

·   вероятность отказа

·   вероятность развития отказа при действии АВР


0,18


0,04


-


-


-


-


-


-

-

Неавтоматическое включение резервного питания

-

0,038

-

-

-

Секция шин 6,10 кВ

0,01

0,228

-

-


Сначала рассчитывается ЛРС I и II.

1. Определяем показатели аварийных отключений вводов.

Средний параметр потока отказов для I ввода из-за аварийных отключений  равен сумме параметров потока отказов элементов I ввода  и параметра потока отказов источника питания I ввода :


 (2.9.65)


Средний параметр потока отказов для II ввода из-за аварийных отключений  равен сумме параметров потока отказов элементов II ввода  и параметра потока отказов источника питания II ввода :

 (2.9.66)


Среднее время восстановления напряжения для I ввода после аварийного отключения , равно:


 (2.9.67)


Среднее время восстановления напряжения для II ввода после аварийного отключения , равно:


 (2.9.68)


2. Показатели аварийных отключений из-за отказов шин ТП или из-за развития отказов со стороны присоединений ().

Присоединениями в данном случае являются по две ячейки () с масляным выключателем на каждой секции шин , а шины ТП образованы низкой стороной трансформатора, то есть число потока отказов шин равно числу потока отказов трансформатора . Аналогичная ситуация и для длительности восстановления напряжения.

Средний параметр потока отказов  и среднее время восстановления напряжения  для I ввода из-за развития отказов со стороны присоединений:

 (2.9.69)

 (2.9.70)


Средний параметр потока отказов  и среднее время восстановления напряжения  для II ввода из-за развития отказов со стороны присоединений:


 (2.9.71)

 (2.9.72)

3. Показатели аварийных отключений секций шин ().


Средний параметр потока отказов  и среднее время восстановления напряжения  для I ввода из-за аварийных отключений секций шин, то есть аварийных отключений ввода () или развития отказов со стороны присоединений ():


 (2.9.73)

 (2.9.74)

Средний параметр потока отказов  и среднее время восстановления напряжения  для II ввода из-за аварийных отключений секций шин, то есть аварийных отключений ввода () или развития отказов со стороны присоединений ():


 (2.9.75)

 (2.9.76)


4. Показатели полных отключений вводов ().

Определение показателей  (р – отключение для профилакти-ческого ремонта или обслуживания) производится исходя из предположения, что возможности совмещения ремонтов элементов ввода реализованы не полностью. Числовые характеристики плановых ремонтов элементов 1, 2, 3 (5, 6, 7) образуют одну ремонтируемую группу с показателями:



Элемент 1, 3 (5, 7) – разъединитель 110 кВ в ремонтируемую группу не включен, так как его профилактическое обслуживание проводится одновременно с ремонтом воздушного выключателя 110 кВ.

Средний параметр потока отказов  и среднее время восстановления напряжения  для I ввода из-за аварийных отключений ввода () или отключений для профилактического ремонта и обслуживания ():

 (2.9.77)

 (2.9.78)


Средний параметр потока отказов  и среднее время восстановления напряжения  для II ввода из-за аварийных отключений ввода () или отключений для профилактического ремонта и обслуживания ():


 (2.9.79)

 (2.9.80)


5. Показатели полных отключений секций шин ().

Средний параметр потока отказов  и среднее время восстановления напряжения  для I ввода из-за аварийных отключений ввода, отключений для профилактического ремонта и обслуживания () или развития отказов со стороны присоединений ():


 (2.9.81)

 (2.9.82)


Средний параметр потока отказов  и среднее время восстановления напряжения  для II ввода из-за аварийных отключений ввода, отключений для профилактического ремонта и обслуживания () или развития отказов со стороны присоединений ():


 (2.9.83)

 (2.9.84)


Затем переходят к расчету ЛРС III и IV.

Поскольку параметры элементов, составляющих ЛРС III и IV одинаковы и число потока отказов


 


а время восстановления


 


расчет будет представлен на примере ЛРС III, для ЛРС IV он идентичен.

6. Показатели аварийных отключений из-за отказов шин ТП или из-за развития отказов со стороны присоединений ().

На данном этапе проектирования количество отходящих линий неизвестно, поэтому для упрощения расчетов принимают число присоединений mIII = 1 для обоих секций шин – 3 и 4 (секции шин пронумерованы в соответствии с номерами источников питания (ИП) для данных секций).

Показатели надежности для элементов 13 и 14 ЛРС III и для секций шин 6-10 кВ (таблица 12), равны:


,

 .


Средний параметр потока отказов  и среднее время восстановления напряжения  для 3 секции шин из-за развития отказов со стороны присоединений:


 (2.9.85)

 (2.9.86)


Средний параметр потока отказов  и среднее время восстановления напряжения  для 4 секции шин из-за развития отказов со стороны присоединений:


 (2.9.87)

 (2.9.88)


7. Показатели надежности отдельных секций шин ТП при сохранении электроснабжения на других – индивидуальные показатели ().

Средний параметр потока отказов  и среднее время восстановления напряжения  для 3 секции шин из-за отказов ИП () с учетом вероятности отказа АВР  или развития отказов со стороны присоединений ():


 (2.9.89)

 (2.9.90)


Средний параметр потока отказов  и среднее время восстановления напряжения  для 4 секции шин из-за отказов ИП () с учетом вероятности отказа АВР  или развития отказов со стороны присоединений ():


 (2.9.91)

 (2.9.92)


8. Показатели аварийных отключений секций шин ().

Средний параметр потока отказов  и среднее время восстановления напряжения  для 3 секции шин из-за отказов ИП () или развития отказов со стороны присоединений ():

 (2.9.93)

 (2.9.94)


Средний параметр потока отказов  и среднее время восстановления напряжения  для 4 секции шин из-за отказов ИП () или развития отказов со стороны присоединений ():


 (2.9.95)

 (2.9.96)


9. Показатели полных отключений ввода ().

Показатели  для данной ЛРС не определяются, так как на вводе схемы элементов нет, а вышерасположенные элементы относятся к I и II ЛРС, при расчете которых ремонтные показатели уже были учтены. Отсюда, показатели надежности полных отключений ввода ЛРС III () равны показателям надежности из-за аварийных отключений ввода, которыми в данном случае являются показатели ИП 3 и ИП 4 ():


 

 

 

 

10. Показатели полных отключений секций шин ().

Так как показатели надежности полных отключений ввода ЛРС III () равны показателям надежности ИП 3 и ИП 4 () соответственно, то показатели полных отключений секций шин  равны показателям аварийных отключений секций шин  соответственно:



11. Показатели полного отключения ТП ().

Показатели одновременного отказа ИП 3 и 4 секции шин:


 (2.9.97)

 (2.9.98)


Полное отключение ТП происходит при:

·                    аварийном отключении 4 секции шин (аварийное отключение ввода или аварийное отключение из-за отказов шин ТП или из-за развития отказов со стороны присоединений) во время ремонта или аварии на 3 секции шин и наоборот;

·                    аварийном отключении из-за отказов шин ТП или из-за развития отказов со стороны присоединений во время аварии или ремонтных работ на вводе 3 секции шин с учетом отказа АВР (то же для 4 секции шин);

·                    аварийном отключении 3 или 4 секции шин (аварийном отключении ввода или аварийном отключении из-за отказов шин ТП или из-за развития отказов со стороны присоединений)с учетом ложного срабатывания АВР;

·                    отказе обоих источников питания.

Учитывая все вышеперечисленное, показатели надежности полного отключения ТП () равны:


 (2.9.99)

 (2.9.100)


12. Показатели, характеризующие отказы одной, но любой, секции ТП при сохранении напряжения на другой ():


 (2.9.101)

 (2.9.102)


13. Отказы каждой из секций независимо от работоспособности другой ():


 (2.9.103)

 (2.9.104)

 (2.9.105)

 (2.9.106)


14. Отказы любого вида ():


 (2.9.107)

 (2.9.108)


15. Вероятность безотказной работы и коэффициент простоя, характеризующие все вышерассмотренные случаи нарушения электроснабжения определяются по формулам (1.3.5) и (1.3.6). Так при отключении секции 3 при сохранении питания 4 секции:


 (2.9.109)

 (2.9.110)


Результаты расчета представлены в таблице 13.

 

Таблица 13

Показатели надежности для схемы с выключателями (рис. 9б)

Разновидности нарушения электроснабжения

Числовой показатель надежности

Отключение секции 3(5) при сохранении питания 4(6) секции

0,192

0,464

0,825

0,01×10-3

Отключение секции 4(6) при сохранении питания 3(5) секции

0,192

0,464

0,825

0,01×10-3

Отключение одной из секций

[3 или 4 (5 или 6)] при сохранении питания другой

0,384

0,464

0,681

0,02×10-3

Отключение секции 3(5) независимо от сохранения питания 4(6) секции

0,202

0,797

0,817

0,018×10-3

Отключение секции 4(6) независимо от сохранения питания 3(5) секции

0,202

0,797

0,817

0,018×10-3

Отключение секций 3 и 4 (5 и 6) одновременно

0,0095

7,499

0,991

0,008×10-3

Любое нарушение ЭС

0,394

0,631

0,674

0,028×10-3


Таким образом, видно, что вероятность безотказной работы  для схемы с выключателями (рис. 9,б) больше, а коэффициент простоя  меньше, чем для схемы с разъединителями на высокой стороне подстанции (рис. 9,а) для всех вышерассмотренных случаев нарушения электроснабжения.

Итак, рассчитав параметры надежности рассматриваемых схем, можно определить среднегодовой ожидаемый ущерб от перерывов электроснабжения, входящий в формулу годовых приведенных затрат.

Среднегодовой ожидаемый ущерб

Как уже отмечалось, среднегодовой ожидаемый ущерб УСГ (руб./год) от нарушения электроснабжения технологических установок определяется с использованием полученных в результате расчета надежности СЭС средних значений параметра потока отказов и времени восстановления электроснабжения для полных и частичных отказов.

Для схемы (рис. 9,а) берут следующие значения среднего параметра потока отказов и времени восстановления электроснабжения для полных и частичных отказов рассматриваемой подстанции соответст- венно:


 


из табл. 11. Для данных значений  и по графику зависимости полного ущерба от среднего времени восстановления электроснабжения (рис. 4), находят

Следовательно, среднегодовой ожидаемый ущерб для схемы (рис. 9,а) по формуле (1.1.12), равен:



Аналогично, для схемы (рис. 9,б):   из табл. 13. По графику зависимости полного ущерба от среднего времени восстановления электроснабжения (рис. 4):

Следовательно, среднегодовой ожидаемый ущерб для схемы (рис. 9,б) по формуле (1.1.12), равен:



Таким образом, среднегодовой ожидаемый ущерб УСГ от нарушения электроснабжения технологических установок для схемы (рис. 9,б) меньше, чем для схемы (рис. 9,а).

Технико-экономический расчет

Используют ту же методику, что и при определении рационального напряжения питания. Находят приведенные затраты для каждого варианта схем распределительных устройств высшего напряжения (рис 9, а,б).

При определении приведенных затрат на сооружение распределительных устройств высшего напряжения для каждого варианта схем суммирование производится по элементам схем (линиям, трансформаторам и т. д.). Вариант считается оптимальным, если приведенные затраты минимальны. Если какая-либо составляющая этих затрат входит во все сравниваемые варианты (величина постоянная), она может не учитываться, так как на выбор варианта не влияет. В данном случае, не учитывают следующие составляющие: высоковольтные выключатели и разъединители подстанции системы; ВЛЭП, по которой осуществляется питание завода; силовые трансформаторы подстанции. Следовательно, капитальные затраты для схемы (рис 9,а) будет составлять стоимость разъединителей QS5, QS6, а для схемы (рис. 9,б) - стоимость разъединителей QS1 – QS4 и стоимость высоковольтных выключателей Q1 и Q2.

Нормативный коэффициент эффективности капиталовложений для новой техники принимают равным ЕН = 0,15 о.е./год.

Cуммарные издержки на амортизацию и обслуживание силового электротехнического оборудования и распределительных устройств 35-150 кВ  [8].

Современная стоимость высоковольтного оборудования была уже определена при выборе рационального напряжения питания. Она составила для высоковольтного воздушного выключателя ВВУ-110Б-40/2000У1 , а для высоковольтного разъединителя РНД(З)-110(Б)(У)/1000У1(ХЛ)

Стоимость потерь энергии сЭ в данном случае не учитывают, так как она одинакова для обоих вариантов.

Отсюда, учитывая найденные ранее значения среднегодового ожидаемого ущерба, рассчитывают приведенные затраты для каждого варианта схем распределительных устройств высшего напряжения по формуле (1.1.1):



Таким образом, с точки зрения ТЭР схема с выключателями на высокой стороне подстанции (рис.9,б) является более выгодной, чем схема с разъединителями на высокой стороне подстанции (рис.9,а), так как приведенные затраты для схемы (рис. 9,б) на  меньше, чем для схемы (рис. 9,а).

Заключение

В результате проведения технико-экономического сравнения вариантов схем с учетом надежности электроснабжения потребителей выбирается схема с выключателями на высокой стороне (рис.9,б).

Выбор схемы распределительного устройства низшего напряжения

Рис. 11. Схема РУ НН

 
Учитывая выбор силового трансформатора с расщепленной вторичной обмоткой мощностью 25 МВА с вторичным напряжением 6-10 кВ, выбирают схему РУ НН, изображенную на рис. 11. Преимущество схемы состоит в том, что она позволяет значительно уменьшить отрицательное влияние нагрузок одной ветви на качество напряжения питания нагрузок другой ветви.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.