Рефераты. Электроснабжение механического завода местной промышленности















Компенсация реактивной мощности

При реальном проектировании энергосистема задаёт экономически выгодную величину перетока реактивной мощности (Qэкон), в часы максимальных активных нагрузок системы, передаваемой в сеть потребителю.

В дипломном проектировании Qэкон рассчитывается по формуле, где tgном находится из выражения:



где tgjб -базовый коэффициент реактивной мощности принимаемый для сетей 6-10 кВ присоединенных к шинам подстанций с высшим напряжения 110 кВ, tgjб= =0,5;

k-коэффициент учитывающий отличие стоимости электроэнергии в различных энергосистемах, для Омской энергосистемы: к = 0,8;

dм-это отношение потребления активной мощности потребителем в квартале max нагрузок энергосистемы к потреблению в квартале max нагрузок потребителя, для Омской энергосистемы: dм = 0,7;


Qэкон. = Рр· tgfэ =16384.46. ·0,625=10240.3 кВар,


Мощность компенсирующих устройств, которые необходимо установить на предприятии, рассчитываем по выражению:


 14707,8- 10240.3 = 4467.5кВар; (18)


Полная мощность предприятия будет равна:


31724,8 кВА . (19)

 

6. Выбор системы питания


Системы электроснабжения промышленного предприятия условно разделена на две подсистемы – систему питания и систему распределения энергии внутри предприятия.

В систему питания входят питающие линии электропередачи (ЛЭП) и пункт приема электроэнергии (ППЭ), состоящий из устройства высшего напряжения (УВН), силовых трансформаторов и распределительного устройства низшего напряжения (РУНН).

ППЭ называется электроустановка, служащая для приема электроэнергии от источника питания (ИП) и распределяющая её между электроприемниками предприятия непосредственно или с помощью других электроустановок.

Предприятие потребляет значительную мощность, а ИП удален, то прием электроэнергии производится либо на узловых распределительных подстанциях (УРП), либо на главных понизительных подстанциях (ГПП), либо на подстанциях глубокого ввода (ПГВ).

Так как у ПГВ первичное напряжение 35-220 кВ и выполняется по упрощенным схемам коммуникации на первичном напряжении, то в качестве ППЭ выбираем унифицированную комплектную подстанцию блочного исполнения типа КТПБ – 110/6 – 104.


6.1 Выбор устройства высшего напряжения ППЭ


Схемы электрических соединений подстанций и распределительных устройств должны выбираться из общей схемы электроснабжения предприятия и удовлетворять следующим требованиям:

-                        Обеспечивать надежность электроснабжения потребителей;

-                        Учитывать перспективу развития;

-                        Допускать возможность поэтапного расширения;

-                        Учитывать широкое применение элементов автоматизации и требования противоаварийной автоматики;

-                        Обеспечивать возможность проведения ремонтных и эксплуатационных работ на отдельных элементах схемы без отключения соседних присоединений.

На всех ступенях системы электроснабжения следует широко применять простейшие схемы электрических соединений с минимальным количеством аппаратуры на стороне высшего напряжения, так называемые блочные схемы подстанций без сборных шин.

При выполнении блочных схем подстанции напряжением 35 – 220 кВ следует применить:

1.  Схемы «отделитель-короткозамыкатель» при питании предприятия по магистральной линии и «разъединитель-короткозамыкатель» при питании по радиальной линии. В данной схеме отключающий импульс от релейной защиты подается на короткозамыкатель, который создает искусственное короткое замыкание, что приводит к отключению головного выключателя линии. При питании по магистральной линии отделитель во время бестоковой паузы срабатывает, отделяя УВН от линии, и через выдержку времени устройство АПВ на головном выключателе подает на него включающий импульс и линия вновь включается, обеспечивая электроснабжение оставшихся потребителей. При радиальной схеме устройство АПВ на головном выключателе не устанавливается, следовательно, отдельной схемы, при малых расстояниях от подстанции до короткозамыкателя (до 5 км), не рекомендуется из-за возникновения километрического эффекта.

2.  Схемы глухого присоединения линии к трансформатору через разъединитель является более дешевой по сравнению с предыдущей, при малых расстояниях. Отключающий импульс в данной схеме подается по контрольному кабелю на головной выключатель.

3.  Схемы с выключением на стороне высокого напряжения.

Выбор вида УВН осуществляется на основании технико-экономического расчета (ТЭР).

Наиболее экономичный вариант электроустановки требует наименьшего значения полных при приведенных затрат, которые определяются по выражению:



где ЕН = 0,12 нормативный коэффициент эффективности капиталовложений, руб.

К – капиталовложения в электроустановку, руб.

И – годовые издержки производства, руб/год.

На основании вышеизложенного наметим два варианта и по результатам ТЭР выберем вариант с наименьшими затратами.

Вариант 1 Схема «разъединитель-короткозамыкатель» рис.6.

Вариант 2 Схема «Выключатель» рис. 7.

Вариант 1.

Капиталовложения

Разъединитель РНД3-1б-110/1000

Краз = 4,6 тыс. руб. согласно [7]


Короткозамыкатель КЗ-110У-У1(Т1)

ККЗ = 10,6 тыс. руб. согласно [7].


Стоимость монтажа и материалов 1 км контрольного кабеля в траншее с алюминиевыми жилами сечением 10х2,5 мм2

ККК = 11,3 тыс. руб.


Суммарные капиталовложения:


тыс. руб.


Вариант 2.

Капиталовложения ВВЭ-110Б-16/1000 УХЛ1

КВ = 90 тыс. руб. согласно [7]

Разъединитель РНД3-1б-110/1000

Краз = 4,6 тыс. руб. согласно [7]

Суммарные капиталовложения:


 тыс. руб.


2. Издержки на амортизацию и обслуживание.



где Ра – амортизационное отчисление, руб.

Р0 – затраты на электроэнергию, руб.

РР – расходы на эксплуатацию, руб.



Вариант 1

 тыс. руб.


Вариант 2


 тыс. руб.


3. Полные приведенные затраты

Вариант 1.


 тыс. руб.


Вариант 2


 тыс. руб.


Окончательно выбираем наиболее надёжную схему УВН ППЭ, т.е. схему «Выключатель» вариант 2.


6.2 Выбор трансформаторов ППЭ


Выбор трансформаторов ППЭ производится по ГОСТ 14209-85, т.е. по расчетному максимуму нагрузки SР, по заводу намечаются два стандартных трансформатора, намечаемые трансформаторы проверяются на эксплуатационную перегрузку.

По суточному графику определяем среднеквадратичную мощность


  кВА

Намечаемая мощность трансформатора



В соответствии с тем, что SСК = 28210,67 кВА выбираем трансформатор марки ТРДН – 25000 кВА.



Так как SСР.КВ = 28210,67 кВА < 2×SН.Т = 50000 кВА, то проверки на эксплуатационную перегрузку не требуется.

По полной мощности подстанции выбираем трансформатор ТРДН-25000/110.

Определяется коэффициент первоначальной загрузки.


 


Проверяется трансформатор на аварийную перегрузку, т.е. когда один трансформатор на ППЭ выведен из строя.


 


Определяем коэффициент загрузки в ПАР


 

Сравним значение  и КМ. Так как , то принимается

По табл. 2 [4] находим К2 доп

Для n=21 и К = 0,564 К2 доп = 1,4

К2 =1,15 < К2 доп = 1,4 следовательно трансформаторы ТРДН-25000/110 удовлетворяют условиям выбора.

Для ТРДН-25000/110:

DРР = 120 кВт; DРХХ = 25 кВт; IХХ% = 0,65%; UКЗ% = 10,5%


6.3 Выбор ВЛЭП


Питание завода осуществляется по двухцепной воздушной линии так как завод состоит из потребителей электроэнергии 1,2 и 3 категории. При этом выбирается марка проводов и площадь их сечения. При выборе необходимо учесть потери в трансформаторах.

Для трансформатора ТРДН-25000/110

DРР = 120 кВт; DРХХ = 25 кВт; IХХ% = 0,65%; UКЗ% = 10,5%

Потери в трансформаторе:


;

 кВт;

 кВар.

Расчетная полная мощность с учетом потерь в трансформаторах



Принимаются к установке провода марки АС.

Расчетный ток в ПАР


  А


Расчетный ток в нормальном режиме.


  А


Предварительно принимаем провод сечением FР = 70 мм2 с Iдоп = 265 А табл.1.3.29 [5].

Проверяется выбранное сечение провода по экономической плотности тока:



где IР – расчетный ток в нормальном режиме.

jЭК – экономическая плотность тока. jЭК = 1 А/мм2 по табл. 1.3.36 [5] для Тmax > 5000 ч.


 мм2


Выбираем FР = 95 мм2 с Iдоп = 330 А по табл. 1.3.29 [5].

По условиям короны минимальное сечение провода на напряжение 110 кВ составляет 70 мм2, данное условие выполняется.

Проверка по потерям напряжения:

Потери напряжения в линии.


,


где ,  кВт


,  кВар


Сопротивление линии:


 Ом

 Ом


По потерям напряжения данное сечение также удовлетворяет условиям проверки. Выбранные провода ЛЭП-110 сечением 95 мм2 и Iдоп = 330 А удовлетворяет всем условиям проверки. Окончательно принимаем провода марки АС-95 с Iдоп = 330 А. Опоры железобетонные двухцепные.

7. Выбор системы распределения


В системе распределения завода входят распределительные устройства низшего напряжения ППЭ, комплектные трансформаторные (цеховые) подстанции (КТП), распределительные пункты (РП) напряжением 6-10 кВ и линии электропередач (кабели, токопроводы), связывающие их с ППЭ.

Выбор системы распределения включает в себя решение следующих вопросов:

1.Выбор рационального напряжения системы распределения.

2.Выбор типа и числа КТП, РП и мест их расположения.

3.Выбор схемы РУ НН ППЭ.

4.Выбор сечения кабельных линий и способ канализации электроэнергии.


7.1 Выбор рационального напряжения распределения


Рациональное напряжение распределения определяется на основании ТЭР и для вновь проектируемых предприятий в основном зависит от наличия и значения мощности ЭП напряжением 6кВ, 10 кВ, наличия соответственной ТЭЦ и величины ее генераторного напряжения, а так же Uрац системы питания. ТЭР не проводится в случаях:

Суммарная мощность электроприемников 6 кВ равна или превышает 40% общей мощности предприятия – тогда напряжение распределения принимается 6 кВ.

Суммарная мощность электроприемников 6 кВ не превышает 15% общей мощности предприятия – тогда напряжения распределения принимается 10 кВ.

Суммарная мощность 6 кВ

  кВА

 


На основании этого принимаем напряжение распределения классом UР = 6 кВ.


7.2 Выбор числа и мощности цеховых ТП


Число КТП и мощность трансформаторов на них определяется средней мощностью за смену (SСМ) цеха, удельной плотностью нагрузки и требованиями надежности электроснабжения.

Если нагрузки цеха (SСМi)на напряжении до 1000 В не превышает 150 – 200 кВА, то на данном цехе ТП не предусматривается, и ЭП цеха запитывается с шин ТП ближайшего цеха кабельными ЛЭП.

Число трансформаторов в цехе определяются по:



где SСМ – сменная нагрузка цеха;

SН.Т. – номинальная мощность трансформатора, кВА

r - экономически целесообразный коэффициент загрузки.

для 1 – трансформаторной КТП (3 категория) b = 0,95-1,0

для 2 – трансформаторной КТП (2 категория) b = 0,9-0,95

для 3 – трансформаторной КТП (1 категория) b = 0,65-0,75

Коэффициент максимума для определения средней нагрузки за смену находим по:


Средняя нагрузка за смену равна:


 


Так как выбор мощности цеховых трансформаторов производится с учетом установки компенсирующих устройств, то найдем мощность компенсации и выберем комплектные компенсирующие устройства.

Мощность компенсации:



Средняя реактивная мощность заводского цеха определяется из выражения:



Если нет необходимости устанавливать компенсирующие устройства, то выражение принимает вид:



Полная мощность, приходящаяся на КТП с учетом компенсации реактивной мощности:


Цеховые трансформаторы выбираются по SСМ с учетом Sуд

Удельная мощность цеха:



где F – площадь объекта, м2

При определении мощности трансформаторов следует учесть, что если Sуд не превышает 0,2 (кВА/м2), то при любой мощности цеха мощность трансформаторов не должна быть более 1000 кВА. Если Sуд находится в пределах 0,2-0,3 кВА/м2, то единичная мощность трансформаторов принимается равной 1600 кВА.

Если Sуд более 0,3 кВА/м2, то на ТП устанавливается трансформаторы 2500 кВА.

После предварительного выбора трансформатора в НР и ПАР, а там где есть необходимость с учетом отключения потребителей 3 категории.

Для примера определяется средняя нагрузка цеха №1. Коэффициент использования для цеха №1 КИ = 0,45оэффициент максимума определяется по формуле .



Средняя нагрузка за максимально нагруженную смену определяется по формулам :


 кВт  кВар


Определяем полную мощность .

кВА


Поскольку  < 200¸250 кВА, то на этом объекте КТП не предусматривается, а ЭП будут запитаны с шин ТП ближайшего цеха по кабельной ЛЭП.

Результаты расчетов средних нагрузок за наиболее загруженную смену остальных цехов сведем в табл. 5.

Согласно [6] для компенсации реактивной мощности используются только низковольтные БСК (напряжением до

где QЭ – реактивная мощность, 1000 В)

Qa – мощность потребителей реактивной мощности на шинах 6кВ

Следовательно будем использовать БСК только на 0,4 кВ. Размещение БСК будем производить пропорционально реактивной мощности узлов нагрузки. БСК не следует устанавливать на силовых пунктах, на подстанциях, где мощность нагрузки менее 200 кВар (это экономически нецелесообразно). Величина мощности БСК в том узле нагрузки определяется по выражению (6.2.



где QМ – реактивная нагрузка в i-том узле, кВар;

 - сумма реактивных нагрузок всех узлов, кВар.

Таблица 5.

РМ,

кВт

QМ,

кВар

КС

КИ

КМ

РСМ,

кВт

QСМ,

кВар

,

кВА

1

106,85

151,993

0,5

0,45

1,11

96,1609

136,794

167,211

2

761,94

905,0594

0,4

0,3

1,33

571,456

678,795

887,313

3

959,49

691,151

0,85

0,8

1,06

903,052

650,495

1112,95

4

5083,1

2960,75

0,9

0,9

1

5083,1

2960,75

5882,51

5

1850,9

1578,422

0,6

0,5

1,2

1542,45

1315,35

2027,14

6

660,94

745,8774

0,5

0,45

1,11

594,845

671,29

896,922

7

679,41

541,7094

0,6

0,5

1,2

566,178

451,424

724,114

8

251,53

213,1886

0,6

0,5

1,2

209,611

177,657

274,77

9

472,49

670,1129

0,4

0,3

1,33

354,365

502,585

614,952

10

1080,3

777,4388

0,85

0,8

1,06

1016,73

731,707

1252,65

11

609,49

684,839

0,5

0,45

1,11

548,537

616,355

825,098

12

796,19

573,037

0,6

0,5

1,2

663,489

477,531

817,468

13

986,09

709,9906

0,85

0,8

1,06

928,084

668,226

1143,62

14

729,4

822,3929

0,5

0,45

1,11

656,457

740,154

989,325

15

266,81

191,3912

0,85

0,8

1,06

251,116

180,133

309,043

16

411,81

296,266

0,85

0,8

1,06

387,582

278,839

477,463

17

168,29

241,6747

0,4

0,3

1,33

126,214

181,256

220,87

18

255,77

251,17

0,7

0,65

1,08

237,5

233,229

332,87

19

464,76

670,2958

0,5

0,45

1,11

418,285

603,266

734,093

20

183,39

261,2078

0,4

0,3

1,33

137,54

195,906

239,366

21

834,61

1544,408

0,6

0,5

1,2

695,506

1287,01

1462,91

22

229

195,0858

0,6

0,5

1,2

190,834

162,572

250,693

23

160,8

135,3157

0,6

0,5

1,2

134,004

112,763

175,136

24

1235,4

1053,099

0,6

0,5

1,2

1029,48

877,583

1352,77

25

393,63

332,3206

0,7

0,65

1,08

365,512

308,583

478,354

26

499,55

358,1306

0,85

0,8

1,06

470,164

337,064

578,503

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.