Как правило, термин «радиоволны» обозначает электромагнитные волны, принадлежащие тому или иному диапазону частот, применяемому в радиотехнике. Специальным решением Международного союза электросвязи (МСЭ) и Международной электротехнической комиссии (МЭК) принято различать следующие диапазоны радиочастот и соответствующих длин радиоволн:
очень низкие частоты (ОНЧ) — от 3 до 30 кГц, или мириаметровые волны (длина волны от 100 до 10 км);
низкие частоты (НЧ) — от 30 до 300 кГц, или километровые волны (длина волны от 10 до 1 км);
средние частоты (СЧ) — от 300 кГц до 3 МГц, или гектометровые волны (длина волны от 1 км до 100 м);
высокие частоты (ВЧ) — от 3 до 30 МГц, или декаметровые волны (длина волны от 100 до 10 м);
очень высокие частоты (ОВЧ) — от 30 до 300 МГц, или метровые волны (длина волны от 10 до 1 м);
ультравысокие частоты (УВЧ) — от 300 МГц до 3 ГГц, или дециметровые волны (длина волны от 1 м до 10 см);
сверхвысокие частоты (СВЧ) — от 3 до 30 ГГц, или сантиметровые волны (длина волны от 10 до 1 см);
крайне высокие частоты (КВЧ) — от 30 до 300 ГГц, или миллиметровые волны (длина волны от 1 см до 1 мм).
Радиотехника исторически развивалась с неуклонной тенденцией к освоению все более высокочастотных диапазонов. Это было связано прежде всего с необходимостью создавать высокоэффективные антенные системы, концентрирующие энергию в пределах узких телесных углов. Дело в том, что антенна с узкой диаграммой направленности обязательно должна иметь поперечные размеры, существенно превышающие рабочую длину волны. Такое условие легко выполнить в метровом, а тем более в сантиметровом диапазоне, в то время как остронаправленная антенна для мириаметровых волн имела бы совершенно неприемлемые габариты.
Вторым фактором, определяющим ценные свойства высокочастотных диапазонов, служит то обстоятельство, что здесь удается реализовать большое число радиоканалов со взаимно не пересекающимися полосами частот. Это дает возможность, с одной стороны, широко использовать принцип частотного разделения каналов, а с другой — применять широкополосные системы модуляции, например частотную модуляцию. При определенных условиях такие системы модуляции способны обеспечить высокую помехоустойчивость работы радиоканала.
В практике радиовещания и телевидения сложилась также несколько упрощенная классификация диапазонов радиоволн. Согласно ей, мириаметровые волны называют сверхдлинными волнами (СДВ), километровые — длинными волнами (ДВ); гектометровые — средними волнами (СВ), декаметровые —короткими волнами (КВ), а все более высокочастотные колебания с длинами волн короче 10 м относят к ультракоротким волнам (УКВ).
1. РАСПРОСТРАНЕНИЕ РАДИОВОЛН В СВОБОДНОМ
ПРОСТРАНСТВЕ
Система передачи информации состоит из трех основных частей: передающего устройства, приемного устройства и промежуточного звена — соединяющей линии. Промежуточным звеном является среда — пространство, в котором распространяются радиоволны. При распространении радиоволн по естественным трассам, т. е. в условиях, когда средой служит земная поверхность, атмосфера, космическое пространство, среда является тем звеном радиосистемы, которое практически не поддается управлению.
При распространении радиоволн в среде происходят изменение амплитуды поля волны, изменение скорости и направления распространения, поворот плоскости поляризации и искажение передаваемых сигналов. В связи с этим, проектируя линии радиосвязи, необходимо:
рассчитать мощность передающего устройства или мощность сигнала на входе приемного устройства (определить энергетические параметры линий);
определить оптимальные рабочие волны при заданных условиях распространения;
определить истинную скорость и направление прихода сигналов;
учесть возможные искажения передаваемого сигнала и определить меры по их устранению.
Для решения этих задач необходимо знать электрические свойства земной поверхности и атмосферы, а также физические процессы, происходящие при распространении радиоволн.
Земная поверхность оказывает существенное влияние на распространение радиоволн:
в полупроводящей поверхности Земли радиоволны поглощаются;
при падении на земную поверхность они отражаются;
сферическая форма земной поверхности препятствует прямолинейному распространению радиоволн.
Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли, называют земными радиоволнами (1 на рис.1.1). Рассматривая распространение земных волн, атмосферу считают средой без потерь с относительной диэлектрической проницаемостью ε, равной единице. Влияние атмосферы учитывают отдельно, внося необходимые поправки.
В окружающей Землю атмосфере различают три области, оказывающие влияние на распространение радиоволн: тропосферу, стратосферу и ионосферу. Границы между этими областями выражены не резко и зависят от времени и географического места.
Тропосферой называется приземной слой атмосферы, простирающийся до высоты 7-18 км. В области тропосферы температура воздуха с высотой убывает. Тропосфера неоднородна как в вертикальном направлении, так и вдоль земной поверхности. Ее электрические параметры меняются при изменении метеорологических условий. В тропосфере происходит искривление траектории земных радиоволн 1, называемое рефракцией. Распространение тропосферных радиоволн 2 возможно из-за рассеяния и отражения их от неоднородностей тропосферы. Радиоволны миллиметрового и сантиметрового диапазонов в тропосфере поглощаются.
Стратосфера простирается от тропопаузы до высот 50—60 км. Стратосфера отличается от тропосферы существенно меньшей плотностью воздуха и законом распределения температуры по высоте: до высоты 30—35 км температура постоянна, а далее до высоты 60 км резко повышается. На распространение радиоволн стратосфера оказывает то же влияние, что и тропосфера, но оно проявляется в меньшей степени из-за малой плотности воздуха.
Ионосферой называется область атмосферы на высоте 60—10 000 км над земной поверхностью. На этих высотах плотность воздуха весьма мала и воздух ионизирован, т. е. имеется большое число свободных электронов. Присутствие свободных электронов существенно влияет на электрические свойства ионосферы и обусловливает возможность отражения от ионосферы радиоволн длиннее 10 м. Радиоволны, распространяющиеся путем отражении от ионосферы или рассеяния в ней, называют ионосферными волнами 3. На условия распространения ионосферных волн свойства земной поверхности и тропосферы влияют мало.
Условия распространения радиоволн 4,5 при космической радиосвязи обладают некоторыми специфическими особенностями, а на радиоволны
Рис. 1.1. Пути распространения радиоволн
Рис. 1.2. Диаграммы направленности антенны по
мощности:
1 – изотропного излучателя; 2 – направленной
антенны
4 основное влияние оказывает атмосфера Земли.
1.1. Формула идеальной радиопередачи
Свободное пространство можно рассматривать как однородную непоглощающую среду с ε =1. В действительности таких сред не существует, однако выражения, описывающие условия распространения радиоволн в этом простейшем случае, являются фундаментальными. Распространение радиоволн в более сложных случаях характеризуется теми же выражениями с внесением в них множителей, учитывающих влияние конкретных условий распространения.
Для проектирования различных радиосистем необходимо определять напряженность электрического поля радиоволны в месте приема или мощность на входе приемного устройства.
Для свободного пространства плотность энергии П (Вт/м2) на расстоянии r (м) от точечного источника, излучающего радиоволны равномерно во всех направлениях, связана с мощностью, излучаемой этим источником Ризл (Вт) следующей зависимостью:
,
где П – модуль вектора Пойнтинга.
На практике антенна излучает энергию по разным направлениям неравномерно. Для учета степени неравномерности излучения вводят коэффициент направленного действия антенны.
Коэффициент направленного действия антенны D показывает, во сколько раз изменяется плотность мощности на данном расстоянии от излучателя при направленном излучателе по сравнению с ненаправленным (изотропным) излучателем.
При использовании направленного излучателя происходит пространственное перераспределение мощности, в результате чего в некоторых направлениях плотность мощности повышается, а в других снижается по сравнению со случаем использования изотропного излучателя. Применение направленных антенн позволяет получить в D раз большую плотность мощности в точке приема или в D раз снизить мощность передатчика.
Величина D является функцией углов наблюдения: в горизонтальной плоскости ξ и в вертикальной q (рис 1.2). Обычно антенна создает максимальное излучение лишь в некотором направлении (ξ0 θ0), для которого D приобретает максимальное значение Dмакс=D(ξ0 θ0). Зависимость величин D от углов ξ и θ называют диаграммой направленности антенны по мощности, а отношение F2(ξ,θ)= D(ξ θ)/Dмакс
- нормированной диаграммой направленности по мощности (рис.1.2).
Плотность мощности на расстоянии r от направленной излучающей антенны
.
Амплитуда напряженности электрического поля радиоволны в свободном пространстве связана с плотностью энергии этой волны (через сопротивление свободного пространства Z0)
E2m cв =2Z0 П = 240p П,
откуда определяется амплитудное значение напряженности электрического поля в свободном пространстве Еm cв (В/м) на заданном расстоянии r (м) от излучателя:
(1.1)
Мощность на входе приемника, согласованного с антенной, находящейся на расстоянии r от излучателя,
, (1.2)
где
— эффективная площадь приемной антенны, характеризующая площадь фронта волны, из которой антенна извлекает энергию.
Мощность Рпр.св удобно определять непосредственно через мощность Pизл и величину Dизл излучающей антенны:
. (1.3)
Это выражение называется формулой идеальной радиопередачи.
Ослабление мощности при распространении радиоволн в свободном пространстве, определяемое как отношение Рпр.св / Pизл, называют потерями передачи в свободном пространстве. При ненаправленных передающей и приемной антеннах это отношение B0 (дБ) рассчитывают по формуле:
, (1.4)
где Р — мощность, Вт; r — расстояние, км; ƒ — частота, МГц.
Применение направленных антенн эквивалентно увеличению излучаемой мощности в раз.
Напомним, что поляризация радиоволн определяется ориентировкой вектора напряженности электрического поля радиоволны в пространстве, причем направление вектора определяет направление поляризации [2].В зависимости от изменения направления вектора поляризация может быть линейной, круговой и эллиптической. Вид поляризации радиоволн в свободном пространстве определяется типом излучателя (антенны). Например, антенна-вибратор излучает в свободном пространстве линейно поляризованную волну.
Для получения волн с круговой поляризацией достаточно иметь в качестве передающей антенны два линейных вибратора, смещенных в пространстве на 90° один относительно другого и питать их токами равной амплитуды со сдвигом по фазе на 90°. Радиоволны с круговой поляризацией излучают, например, спиральная и турникетная антенны. Подобный вид поляризации находит широкое применение в телевидении и радиолокации.
Эллиптически поляризованная волна может быть создана, например, с помощью антенн, в виде двух скрещенных вибраторов, плечи которых питают токами с разной амплитудой.
Для эффективного приема характер поляризации поля принимаемой волны и поляризационные свойства приемной антенны должны совпадать. Формулы (1.2) и (1.3) справедливы в случае совпадения характера и направления поляризации электрического поля и приемной антенны. Если совпадение отсутствует, мощность в приемной антенне уменьшается и в указанные формулы вводят поправки. Например, для наиболее эффективного приема волны с линейной поляризацией вибратор приемной антенны должен быть ориентирован параллельно вектору . Если направление вектора перпендикулярно оси приемного вибратора, то приема не будет.
1.2. Область пространства, существенная при распространении радиоволн. Метод зон Френеля
На формирование поля вблизи приемной антенны В (рис. 1.3,а) различные области свободного пространства, через которое проходят радиоволны от излучателя A, влияют в разной степени. Излучатель создает сферическую волну, каждый элемент фронта которой вновь является источником сферической волны. Новая волновая поверхность находится как огибающая вторичных сферических волн. Поле на некотором расстоянии от излучателя определяется суммарным действием вторичных источников. Основной вклад в эту сумму дают источники, расположенные вблизи прямой А В. Действие вторичных смежных излучателей, расположенных на значительном расстоянии от этой прямой, взаимно компенсируется.
Областью, существенной при распространении радиоволн, называют часть пространства, в котором распространяется основная доля энергии. Неоднородности среды (например, препятствия на пути волны) влияют на характеристики поля в точке приема, если они охвачены областью, существенной при распространении. Эта область имеет конфигурацию эллипсоида вращения с фокусами в точках А и В (рис.1.3,б). Радиус поперечного сечения эллипсоида на расстоянии от точки A и расстоянии r0 от точки B определяется равенством:
rn+ rn=r0+ r0+n (l/2)
и может быть вычислен из уравнения ,
где - целое число.
Кольцевую область, построенную на плоскости S, перпендикулярной линии АВ, с радиусами Rn называют зоной Френеля номера n (рис. 1.3, в).
Если на пути распространения волны помещен экран с круглым отверстием (плоскость экрана перпендикулярна линии АВ), то при изменении радиуса отверстия (или перемещении экрана вдоль трассы) напряженность поля в точке В будет периодически изменяться (рис.1.4).
Рис. 1.3. К определению зон Френеля
а– формирование волнового фронта; б – к определению
размеров зон Френеля и конфигурация 1-й зоны вдоль трассы;
в - проекция зон Френеля на плоскость, перпендикулярную к направлению трассы
Рис. 1.4. Изменение напряженности поля за
экраном с круглым отверстием при
изменении радиуса отверстия R
(– радиус первой зоны Френеля)
Напряженность поля будет максимальной, когда радиус отверстия в экране равен радиусу первой зоны Френеля и радиусам зон Френеля со следующими нечетными номерами. При большом размере отверстия (больше радиуса шестой зоны Френеля) амплитуда напряженности поля стремится к Em св (рис.1.4), поэтому радиус поперечного сечения области, существенной при распространении, считают равным радиусу зоны Френеля с номерами 6—10. Однако для ориентировочных расчетов часто размер существенной области можно принять равным радиусу первой зоны Френеля.
1.3. Вопросы для самопроверки
1. Какие существуют классификации диапазонов радиоволн? Приведите эти классификации.
2. Почему существует тенденция к освоению всё более высокочастотных диапазонов радиоволн?
3. Какова последовательность проектирования линий радиосвязи?
4. Какие факторы оказывают влияние на виды путей распространения радиоволн?
5. Запишите формулу идеальной радиопередачи. Поясните ее.
6. Какие существуют виды поляризации радиоволн?
7. Почему для эффективного приёма необходимо учитывать характер поляризации принимаемой волны и поляризационные свойства приемной антенны?
8. Какая часть пространства называется областью, существенной при распространении радиоволн?
9. С какой целью вводится понятие зон Френеля?
10. Изобразите и поясните график зависимости величины напряженности поля за непрозрачным экраном от радиуса отверстия в этом экране.
2. ВЛИЯНИЕ ЗЕМНОЙ ПОВЕРХНОСТИ НА РАСПРОСТРАНЕНИЕ РАДИОВОЛН
2.1. Поглощение радиоволн различными видами земной поверхности
Конечные пункты радиолиний в большинстве случаев расположены в непосредственной близости от поверхности Земли. Присутствие полупроводящей поверхности Земли вызывает поглощение и отражение радиоволн, иногда с изменением поляризации волны. Количественно эти явления зависят от электрических параметров земной поверхности: диэлектрической проницаемости ε и проводимости (табл.2.1). Величины ε и определяются экспериментально по поглощению радиоволн земной поверхностью и отражению от нее и зависят от структуры земной поверхности, ее влажности, слоистости, температуры, а также от рабочей частоты.
Из табл.2.1 видно, что с повышением частоты (уменьшением длины волны) ε морской и пресной воды убывает. Это убывание ε вызвано тем, что молекулы воды полярны и при повышении частоты не успевают ориентироваться в направлении электрического поля.
Страницы: 1, 2, 3, 4, 5, 6, 7