Рис. 3.2. Виды рефракции радиоволн в тропосфере:
1 – отрицательная рефракция; 2 – положительная рефракция; 3 – критическая рефракция; 4 - сверхрефракция
При сверхрефракции радиоволны, излученные под небольшими углами возвышения, испытывают в нижних слоях тропосферы полное внутреннее отражение и возвращаются к поверхности Земли. При последовательных отражениях от земной поверхности радиоволны могут распространяться на значительные расстояния за пределы «прямой видимости».
3.4. Поглощение радиоволн в тропосфере
Длинные, средние и короткие радиоволны не испытывают поглощения в тропосфере.
Для волн короче 10 см ослабление радиочастотной энергии в тропосфере начинает заметно увеличиваться. Это вызывается поглощением и рассеянием на капельных образованиях или гидрометеорах (главным образом в дожде, тумане; меньше влияют град, снег), а также на твердых частицах (пыль, дым и т. д.). Поглощение вызывается тепловыми потерями в частицах воды или пыли, а потери на рассеяние обусловлены перераспределением энергии в пространстве.
Если волна проходит в тропосфере путь r причем на зону осадков приходится расстояние , то напряженность поля за зоной осадков Em oc определяется по формуле:
(3.6)
где Em св— напряженность поля в свободном пространстве на расстоянии r от излучателя (1.1);
Гoc - коэффициент ослабления, дБ/м.
Зависимость коэффициента ослабления Гoc от длины волны при распространении сантиметровых и миллиметровых волн в дожде и тумане представлена на (рис. 3.3).
Сантиметровые радиоволны рассеиваются капельками дождя и тумана, что приводит к появлению отраженных радиолокационных сигналов. Отраженные сигналы от дождя и туч занимают большую площадь на экранах радиолокационных станций, чем мешают нормальной работе этих станций. Для ослабления отражений от дождя на радиолокационных станциях применяют радиоволны с круговой поляризацией.
Рис. 3.3. Зависимость коэффициента поглощения от длины волны для дождя и тумана разной интенсивности:
а – моросящий дождь ( 0,25 мм/ч); б – слабый дождь (1 мм/ч); в – умеренный дождь ( 4 мм/ч); г – сильный дождь (15 мм/ч); д – слабый туман с водностью 0,03 г/м3 (видимость около 600 м); е –средний туман с водностью 0,3 г/ м3 (видимость около 120 м); ж – сильный туман с водностью 2,32 г/м3 (видимость около 30 м)
Рис. 3.4. Зависимость коэффициента поглощения в кислороде и водяных парах от длины волны
Радиоволны короче 3 см испытывают также молекулярное поглощение в кислороде и парах воды, наблюдаемое даже в условиях «чистой» атмосферы и вызываемое затратами энергии на возбуждение атомов. Коэффициент ослабления можно определить с помощью графиков на (рис. 3.4), а напряженность поля Em на расстоянии рассчитать по формуле:
Наиболее интенсивное поглощение наблюдается на волнах 0,25; 0,5; 1,35 см—эти волны непригодны для работы. «Окна прозрачности» атмосферы имеются вблизи волн длиною 0,4 и 0,8 см — эти волны рекомендуются для работы в сантиметровом диапазоне.
3.5. Вопросы для самопроверки
1. Поясните особенности состава и строения тропосферы.
2. Что такое нормальная тропосфера?
3. Как связана диэлектрическая проницаемость тропосферы с метеорологическими условиями?
4. Какова природа мелких неоднородностей тропосферы.
5. Как объяснить наличие явления рефракции в тропосфере.
6. Как зависит радиус кривизны траектории волны от диэлектрической проницаемости?
7. Для чего вводится понятие эквивалентного радиуса земли?
8. Какие условия необходимы для возникновения сверхрефракции радиоволн?
9. Какие виды рефракции существуют? Поясните особенности каждого из видов.
10. За счет каких факторов происходит поглощение радиоволн в тропосфере?
11. Что такое “окно прозрачности “ атмосферы?
4. ИОНОСФЕРА И ЕЕ ВЛИЯНИЕ НА РАСПРОСТРАНЕНИЕ РАДИОВОЛН
4.1. Ионизация и рекомбинация газа в ионосфере
Ионосферой называют область атмосферы, находящуюся на высоте 60—10 000 км, где газ частично или полностью ионизирован, т. е. содержит большое число свободных электронов. Наличие в верхних слоях атмосферы свободных электронов определяет электрические параметры ионизированного газа — его диэлектрическую проницаемость и проводимость .
Число электронов, содержащихся в единице объема воздуха, называется электронной плотностью ().
Электронная и ионная плотности ионосферы непостоянны по высоте, что приводит к преломлению и отражению радиоволн в ионосфере.
Объемные неоднородности ионизированного газа вызывают рассеяние радиоволн. Указанные явления определяют условия распространения радиоволн в ионосфере и в одних случаях могут быть использованы, а в других должны быть учтены при работе радиолиний. В связи с этим возникла необходимость изучения строения ионосферы и свойственных ей регулярных и случайных изменений.
Ионосфера в целом является квазинейтральной, т. е. количества имеющихся в ней положительных и отрицательных зарядов равны. Состав газа в этой области атмосферы отличается от состава газа вблизи поверхности Земли: помимо молекулярных кислорода и азота имеются атомы этих веществ, причем газы не перемешиваются и располагаются слоями в соответствии с их молекулярной массой.
Температура газа, начиная с высоты h = 80 км, плавно возрастает, достигая 2000—3000 К при h = 500600 км. Возрастание температуры с высотой в области ионосферы объясняется тем, что воздух здесь нагревается непосредственно излучением Солнца.
Основным источником ионизации земной атмосферы являются электромагнитные волны солнечного излучения длиной короче 0,1 мкм — нижний участок ультрафиолетового диапазона и мягкие рентгеновские лучи, а также испускаемые Солнцем потоки заряженных частиц. Ультрафиолетовые и рентгеновские лучи производят ионизацию только на освещенной части земного шара и более интенсивно в приэкваториальных областях. Заряженные частицы движутся по спиральным линиям в направлении магнитных силовых линий к магнитным полюсам земного шара и производят ионизацию главным образом в полярных областях. Считают, что ионизирующее действие потока частиц составляет не более 50% ионизирующего действия ультрафиолетового излучения Солнца.
Помимо Солнца источником ионизирующего излучения являются звезды, особенно те, которые обладают высокой температурой (около 20 000°С) и создают интенсивное ультрафиолетовое излучение. Но из-за большой удаленности звезд ионизирующее действие их излучения составляет примерно 0,001 часть ионизирующего действия Солнца. Ионизацию создают также метеоры, вторгающиеся в земную атмосферу со скоростями 11—73 км/с. Кроме повышения среднего уровня ионизации метеоры создают местную ионизацию: за метеором образуется столб ионизированного газа, который быстро расширяется и рассеивается, существуя в атмосфере от одной до нескольких секунд. Такие ионизированные следы метеоров образуются на высоте 80—120 км над земной поверхностью.
Одновременно с появлением новых электронов в ионосфере часть имеющихся электронов исчезает, присоединяясь к положительным и нейтральным молекулам. При этом образуются нейтральные молекулы и отрицательные ионы.
Процесс воссоединения заряженных частиц и образования нейтральных молекул называется рекомбинацией.
После прекращения действия источника ионизации электронная плотность спадает по гиперболическому закону. Поэтому с заходом Солнца ионизация в нижних слоях ионосферы исчезает не мгновенно, а в верхних слоях — сохраняется в течение всей ночи.
4.2. Строение ионосферы
Общая картина распределения электронной плотности по высоте h над земной поверхностью изображена на (рис. 4.1). На высоте 250—400 км, имеется основной максимум ионизации. Область ионосферы ниже основного максимума ионизации принято называть внутренней ионосферой, а область ионосферы выше основного максимума — внешней ионосферой. Наиболее изучена внутренняя ионосфера. Во внутренней ионосфере существуют несколько неярко выраженных максимумов концентрации электронов, условно называемых слоями (областями), которые принято обозначать символами D, E, F1 и F2. Области ионосферы D, Е и F1 обладают достаточно высоким постоянством, проявляющимся в том, что суточный ход изменения электронной концентрации и высота их расположения сохраняются почти неизменными. С наступлением темноты из-за быстрой рекомбинации исчезают области D и F1. В то же время электронная концентрация области Е сохраняет постоянное значение в течение всей ночи.
В области F2 электронная концентрация и высота расположения максимума значительно изменяются день ото дня. При этом ионизация различна в летнее и зимнее время. Зимой (в северном полушарии) электронная концентрация в этой области увеличивается. Суточный ход электронной концентрации области F2 зависит также от геомагнитной широты (расстояния в градусах дуги от магнитного экватора Земли до точки наблюдения).
Ионосфера неоднородна и в горизонтальном направлении. Максимальные горизонтальные градиенты электронной плотности наблюдаются во время захода и восхода Солнца, но они существенно меньше вертикальных градиентов.
Наряду с рассмотренными регулярными областями ионосферы иногда на высоте 95—125 км образуется так называемый спорадический слой Е (слой ), в котором электронная концентрация в несколько раз превышает концентрацию области Е. Слой в средних широтах чаще образуется днем в летние месяцы. В полярных же районах слой возникает в основном в ночное время.
Поскольку солнечное излучение является основным источником ионизации атмосферы Земли, то от активности Солнца зависит и процесс ионизации. Замечено, что активность Солнца изменяется с периодичностью в 11 лет. Критерием солнечной активности служит относительное число солнечных пятен, которое характеризует площадь поверхности Солнца, имеющую наиболее высокую температуру. В настоящее время разработаны методы прогнозирования числа солнечных пятен на много лет вперед и более точно на ближайшие годы. Прогнозирование числа солнечных пятен важно в связи с тем, что электронная плотность ионосферы коррелированна со среднемесячными числами солнечных пятен. Максимум электронной концентрации увеличивается в 1,4—3 раза при переходе от минимума к максимуму солнечной активности.
Регулярная слоистая структура ионосферы временами нарушается, причем эти нарушения вызваны изменением деятельности Солнца, наблюдающимся особенно часто в годы максимума солнечной активности. Происходящие на Солнце время от времени вспышки являются причиной извержения потоков заряженных частиц, попадающих в атмосферу Земли и нарушающих нормальный режим ионизации ионосферы. Структура ионосферы нарушается также под действием процессов, происходящих в коре Земли и нижних слоях атмосферы, например во время извержения вулканов.
Рис. 4.1. Распределение электронной
плотности по высоте атмосферы
Изменение ионизации сопровождается изменением магнитного поля Земли и это явление носит название ионосферно - магнитной бури. Во время ионосферно-магнитной бури понижается электронная плотность в области слоя F. Нарушения этого вида могут длиться от нескольких часов до двух суток и происходят главным образом в приполярных районах.
Временами на Солнце происходят вспышки интенсивного ультрафиолетового излучения, вызывающего повышенную ионизацию нижней ионосферы в слое D. Это явление может длиться от нескольких минут до нескольких часов и происходит только на освещенной стороне земного шара.
Исследования показали, что помимо регулярных и нерегулярных изменений средних величин электронной плотности в ионосфере происходят непрерывные флуктуации электронной плотности. В ионосфере непрерывно происходят сгущения и разряжения плотности ионизации, нерегулярные как во времени так и от точки к точке. Кроме того, под действием ветров вся неоднородная структура ионосферы перемещается. Причинами образования неоднородностей в ионосфере являются турбулентное движение воздуха и неоднородность ионизации.
Неоднородности представляют собой некоторые области с электронной плотностью, отличной от среднего значения электронной плотности на данной высоте ионосферы. Размеры неоднородностей на высоте 60—80 км в слое D составляют до нескольких десятков метров, на высоте слоя E - 200—300 м, а в слое F размер неоднородностей достигает нескольких километров, причем они имеют продолговатую форму и вытянуты вдоль силовых линий постоянного магнитного поля.
Отклонение электронной плотности неоднородностей от среднего значения электронной плотности на данной высоте составляет (0,1 — 1) %; скорость хаотического движения 1—2 м/с.
4.3. Диэлектрическая проницаемость и проводимость ионизированного газа (плазмы)
Относительная диэлектрическая проницаемость ионизированного газа отличается от единицы из-за того, что под действием электрического поля проходящей волны электроны получают смещение относительно равновесного положения и газ поляризуется. Помимо электронов в ионосфере содержатся ионы и нейтральные молекулы, совершающие беспорядочное тепловое движение. Сталкиваясь с тяжелыми частицами, электроны передают им энергию, полученную от электромагнитной волны. При столкновениях эта энергия переходит в энергию теплового движения тяжелых частиц, что и приводит к поглощению радиоволн в ионизированном газе.
Диэлектрическая проницаемость и удельная проводимость ионизированного газа определяются выражениями
где — масса электрона (9,109 10-31кг); е — заряд электрона (1,6010-19 Кл); — число соударений электрона с тяжелыми частицами, происходящее в 1 с, определяемое тепловым движением частиц; Nэ — электронная плотность, см-3.
Для высоких частот, когда 2>> 2, можно пренебречь величиной 2 по сравнению с 2. Тогда выражения для c учётом подстановки в них числовых значений e, , , можно записать:
(4.1)
(4.2)
Используя частоту электромагнитной волны (кГц) формулу для e удобно записать в таком виде:
(4.3)
Это основная расчетная формула для определения относительной диэлектрической проницаемости ионизированного газа. Очевидно, что при значительной электронной плотности диэлектрическая проницаемость газа может оказаться равной нулю.
Частота , при которой выполняется условие e = 0,
(4.4)
называется собственной частотой ионизированного газа или частотой Ленгмюра и является параметром ионизированного газа, удобным для оценки условий распространения радиоволн.
Выражение (4.3) можно переписать иначе, пользуясь понятием собственной частоты ионизированного газа:
(4.5)
При < относительная диэлектрическая проницаемость e оказывается меньше нуля. Это значит, что коэффициент преломления является мнимой величиной. В такой среде электромагнитные колебания не распространяются и быстро затухают.
4.4. Скорость распространения радиоволн в ионизированном
газе (плазме)
Диэлектрическая проницаемость ионизированного газа меньше единицы и зависит от частоты колебаний, поэтому и скорость распространения радиоволн в ионизированном газе зависит от рабочей частоты. Среды, в которых скорость распространения радиоволн зависит от частоты, называются диспергирующими. В диспергирующих средах различают фазовую и групповую скорости распространения радиоволн [2]. Скорость перемещения фронта волны называется фазовой скоростью. Фазовая скорость для сред, приближающихся по своим свойствам к диэлектрику, определяется (2.6). Поэтому для ионизированного газа без учета потерь согласно выражению (4.5)
(4.6)
Фазовая скорость волны в ионизированном газе больше скорости света в свободном пространстве. Однако скорость распространения сигналов не может быть больше скорости света в свободном пространстве. Сигналы конечной длительности, содержащие несколько полных периодов колебаний (группа волн), распространяются с групповой скоростью. Гармонические составляющие сигнала в диспергирующей среде распространяются с разными фазовыми скоростями, что приводит к искажению сигнала.
Под групповой скоростью понимают скорость распространения максимума огибающей сигнала[2]. Групповая скорость связана с фазовой скоростью соотношением для ионизированного газа
(4.7)
В случае приближения рабочей частоты к собственной частоте ионизированного газа (à) групповая скорость уменьшается (à0), а фазовая скорость резко возрастает ().
4.5. Поглощение радиоволн в ионизированном газе (плазме)
Коэффициент затухания радиоволн в ионизированном газе определяется по (2.2) с подстановкой в нее значений e из (4.1) и g из (4.2).
Поглощение радиоволн связано со столкновениями электронов с молекулами и ионами и переходом электромагнитной энергии в тепловую энергию движения тяжелых частиц. В этом процессе важно соотношение между периодом электромагнитных колебаний (T=1/ ) и средним временем между двумя соударениями электрона с молекулами или ионами . На низких частотах при T> энергия электромагнитной волны передается от электрона тяжелой частице малыми порциями, при Т< соударения происходят редко в масштабе периода радиоволны. В том и другом случаях поглощение мало. При T наступает явление резонанса между частотой колебаний электрона под действием электромагнитного поля и тепловым движением частиц, причем поглощение существенно возрастает. Поэтому частотная зависимость коэффициента поглощения описывается кривой (рис. 4.2), имеющей максимум в области частоты , близкой к величине , т. е. наблюдается явление резонанса. В нижних слоях ионосферы 107 1/с и условие = / выполняется для волн длиной около 200 м. Поэтому в диапазоне коротких волн происходит уменьшение поглощения с повышением частоты, а в диапазоне волн длиннее 200 м поглощение увеличивается с повышением частоты.
Страницы: 1, 2, 3, 4, 5, 6, 7