развязывающих устройств, в частности в монолитных ТрУ. Просто реализуемая широкополосная резистивная обратная связь несколько увеличивает Кш поэтому в МШУ применяется и обратная связь на реактивных элементах.
В монолитных схемах ТрУ вместо пассивных СЦ применяют активное согласование – на входе МШУ включают каскад с ОЗ, а на выходе – каскад с ОС. В широкополосных ТрУ, при выборе согласующих полевых транзисторов с крутизной S=1/ρ, равной проводимости МПЛ, может быть достигнуто согласование в полосе нескольких октав, снижение Кш на 1,5...2 дБ и увеличение усиления. Активные согласующие цепи на ПТШ занимают значительно меньшую площадь по сравнению с пассивными.
Питание ПТШ осуществляется двумя способами: с использованием двухполярного источника напряжения и однополярного – с автосмещением транзистора. Цепь автосмещения R и С является, в
последнем случае, цепью отрицательной обратной связи по постоянному току, стабилизирующей параметры ТрУ. Потери шунтирующих конденсаторов ухудшают параметры усилительного каскада, особенно с повышением частоты. Учитывая это, на повышенных частотах предпочитают схему питания с двухполярным источником напряжения.
Шумы ПТШ в основном имеют тепловое происхождение, поэтому при снижении в несколько раз физической температуры ТрУ примерно во столько же раз уменьшается его шумовая температура. Кроме того, вследствие роста подвижности электронов в GaAs при охлаждении, на несколько децибел возрастает усиление ПТШ.
О параметрах лучших зарубежных МШУ можно судить по рекламным проспектам фирмы NEC. Она выпускает МШУ на ПТШ в литерном исполнении, имеющие следующие значения шумовой температуры и, соответственно, различающиеся по стоимости:
в диапазоне 3,625...4,2 ГГц с ТЭМО – 32, 37, 42, 47 К; без охлаждения – 55, 70, 80 К;
в диапазоне 18,6... 19,5 ГГц без охлаждения – 200, 250, 300 К.
Можно выделить четыре основных типа ТрУ:
- однотактные;
- балансные;
- комбинированные;
- отражательные.
Наиболее широкое распространение получили достаточно простые в исполнении однотактные усилители. Как правило, однотактные усилители на биполярных транзисторах требуют применения ферритовых развязывающих устройств, что приводит к увеличению габаритных размеров и является
недостатком этого типа усилителей.
Широкое распространение получили балансные усилители, состоящие из двух однотактных усилителей, включённых параллельно с помощью 3-децибельных мостов.
Балансные транзисторные усилители имеют более широкий динамический диапазон, чем однотактные ( на балансный каскад поступает только половина общей мощности сигнала ), более
высокую надёжность, так как отказ транзистора в одном плече ведёт лишь к уменьшению Кр на 6 дБ при сохранении работоспособности усилителя. Кроме того, балансные усилители легко каскадируются, менее подвержены самовозбуждению, не требуют применения развязывающих ферритовых устройств, дополнительно ограничивающих ширину полосы рабочих частот.
К недостаткам балансного усилителя следует отнести ухудшение его чувствительности из-за потерь на отражение (входной КСВН моста в полосе не лучше 1,5) и диссипативных потерь в высоко-омных линиях мостов.
3. Разработка функциональной схемы СВЧ тракта
3.1. Характеристика элементов приёмного тракта
Разработку функциональной схемы приёмного тракта произведём на основании выбран-ной супергетеродинной структурной схемы приёмника с двойным преобразованием частоты. Функциональная схема тракта приёма, должна содержать следующие части:
- антенну;
- диплексер;
- МШУ;
- полосно-пропускающие фильтры ;
- усилители промежуточной частоты ;
- смесители.
Рассмотрим более подробно элементы тракта СВЧ, которые используются для построения земной станции.
Антенна представляет собой параболический рефлектор диаметра D = 1.2 м и облучатель для приёма сигналов с круговой поляризацией правого вращения.
Отраженный рефлектором сигнал идет на облучатель. Его назначение – передать приня-тую антенной энергию ЭМВ спутника по волноводу к приёмнику.
Облучатель – один из важнейших узлов антенной системы, поэтому к нему предъяв-ляются определенные требования:
1) диаграмма направленности должна быть осесимметричной и без боковых лепестков;
2) облучатель не должен сильно затенять параболическую антенну, так как это приводит к
искажению её диаграммы направленности и снижению коэффициента использования поверхности параболоида вращения.
Облучателями параболических антенн служат слабонаправленные антенны. Это могут быть рупоры, щелевые антенны, спирали, диэлектрические антенны и др.
Волновод круглого сечения в большей степени удовлетворяет требованиям, предъявляемым к облучателям антенных систем – диаграмма направленности осесимметрична, в отличие от пирамидального (прямоугольного) волновода.
Электромагнитная волна, распространяющаяся в пространстве от передающей антенны спутника до антенны земной станции, характеризуется поляризацией, т. е. ориентацией вектора
напряжённости электрического поля Е относительно поверхности Земли. Земная станция принимает со спутника «Экспресс-А» сигнал с круговой поляризацией правого вращения, а излучает сигнал с круговой поляризацией левого вращения.
C выхода облучателя сигнал поступает на диплексер, который выполнен на волноводе круглого сечения. Диплексер осуществляет разделение приёмного и передающего трактов, основанное на поляризационной селекции электромагнитных волн.
Диплексер должен удовлетворять требованию по подавлению сигнала передатчика, просачивающегося в приёмный тракт до необходимого уровня.
Ниже приведены типичные параметры диплексоров С – диапазона:
- развязка между приёмом и передачей: не менее 110 дБ;
- кроссполяризация: не менее – 40 дБ;
- рабочий диапазон частот:
а) на приём: 3600...4200 МГц;
б) на передачу: 5,925...6,525 МГц;
- потери: не более 0,25 дБ;
- диаметр волновода: D = 58 мм.
С выхода диплексора через сигнал поступает на вход Y–циркулятора, представляющего собой симметричное H-плоскостное сочленение трёх прямоугольных волноводов, в центр которого помещён ферритовый цилиндр.
Циркулятор – это устройство, в котором движение потока энергии происходит в строго определённом направлении, зависящем от ориентации внешнего магнитного поля, намагничи-вающего феррит.
Принцип работы циркулятора поясним с помощью рис. 3.1.
Рис. 3.1. Y-циркулятор
Волна Н10, поступающая на вход циркулятора по волноводу 1, преобразуется в области феррита в две волны, которые обегают диск навстречу друг другу, одна по часовой стрелке, другая против неё. Направления вращения вектораобразовавшихся волн противоположны (в точках А и В), поэтому их фазовые скорости при подмагничивании феррита однородным полем
Н0, различны. Параметры феррита и напряжённости поля подбирают так, чтобы обе волны приходили к волноводу 3 в противофазе. При этом электромагнитная энергия будет поступать из волновода 1 в волновод 2 и не попадать в волновод 3. Аналгичным образом поясняется прохождение энергии из плеча 2 в плечо 3, из плеча 3 в плечо 1.
В данном приёмном тракте циркулятор будет использоваться в качестве вентиля для устранения отражённой от входа полосового фильтра волны, а также для согласования выхода диплексора с волноводным входом полосового фильтра.
Рабочая полоса волноводных Y–циркуляторов достигает 30%, потери в прямом направ-лении составляют 0,15...0,5 дБ, в обратном – свыше 20...30 дБ.
С выхода циркулятора сигнал поступает на вход волноводного полосового фильтра.
В таблице 3.1 приведены справочные данные волноводных полосовых фильтров, выпускаемых ОАО „Радиофизика”, которые применяются во входных волноводных цепях земных станций спутниковых систем связи С–диапазона. Фильтры выпускаются в четырех модификациях: WF–12–1, WF–12–2, WF–12–3, WF–12–3В. Сечение волноводных входов фильтра 58х25 мм.
Таблица 3.1. Справочные данные полосовых фильтров
Параметр
Диапазон частот, ГГц
WF-12-1
WF-12-2
WF-12-3
WF-12-3B
Потери, дБ
3,6 – 4,2
0,15
Подавление, дБ
5,925–6,525
70
85
100
МШУ предназначен для усиления до необходимого уровня слабых входных сигналов, принимаемых антенной. В диапазоне частот 3600…4200 МГц сигнал с выхода полосового фильтра поступает на волноводный вход МШУ, а далее через волноводно-микрополосковый переход на вход первого каскада. МШУ выполнен по гибридно-интегральной технологии. Усиленный сигнал с волноводного выхода МШУ подаётся на вход первого смесителя.
3.2. Определение номиналов промежуточных частот и частот гетеродина
В качестве частоты первого преобразования на СВЧ выбирают частоту, лежащую в диапазоне 0,8… 2 ГГц, а для второго преобразования – стандартную частоту 70 МГц.
Первый смеситель осуществляет преобразование сигналов из диапазона 3600…4200 МГц на промежуточную частоту 925 МГц. В качестве первого смесителя выберем двухдиодный балансный смеситель (БС) на 3-х децибельных мостах. Основным преимуществом БС является возможность фазового подавления амплитудных шумов гетеродина на 15…30 дБ, в следствие
чего коэффициент шума смесителя снижается на 2…5 дБ, а при большом уровне шумов гетеродина – на 5…10 дБ. Кроме того, благодаря подавлению в балансной схеме чётных гармоник гетеродина уровень побочных продуктов преобразования меньше – повышаются помехоустойчивость и динамический диапазон. Потери преобразования такого смесителя составляют 5…8 дБ, а коэффициент шума 7…10 дБ.
Используя частотный план стволов спутника «Экспресс-А», изображённый на рис. 3.2. определим диапазон перестройки и шаг сетки частот 1-го гетеродина Г1.
Рис. 3.2. Частотный план стволов спутника «Экспресс - А»
Как видно из рисунка, несущие частоты 12 стволов разнесены по частоте на величину 50 МГц. Следовательно шаг сетки частот гетеродина составит МГц.
Частоты перестройки гетеродина находятся из соотношений:
,
где – максимальное значение несущей частоты. В данном случае МГц;
– минимальное значение несущей частоты. В данном случае МГц;
МГц – выбранное значение промежуточной частоты первого преобразования.
Получим:
МГц
Таким образом первый гетеродин должен перестраиваться в диапазоне частот МГц с шагом МГц.
Количество фиксированных частот гетеродина составит:
Таким образом, перестраивая гетеродин, на промежуточную частоту можно перенести любой из 12-ти стволов.
С коаксиального выхода первого смесителя преобразованный сигнал поступает на поло-совой фильтр. Полосовой фильтр осуществляет выделение полосы частот стволов МГц, который был преобразован на промежуточную частоту 925 МГц и подавление
комбинационных составляющих первого преобразования частоты. В качестве полосового фильтра можно использовать монолитный твердотельный фильтр из высококачественной термостабильной керамики, формирующий АЧХ частотного ствола с потерями не более 1 дБ.
Первый усилитель промежуточной частоты выполняет функцию усиления выделенного потока данных шириной МГц на средней частоте 925 МГц.
Второй смеситель осуществляет второе преобразование частоты, а именно перенос сигнала с частоты МГц на стандартную частоту второго преобразования МГц. В качестве второго смесителя выберем БС, выполненный в интегральном исполнении на ДБШ. При этом частота 2-го гетеродина будет равна:
С выхода второго смесителя сигнал поступает на полосовой LC фильтр с полосой пропускания МГц. Далее сигнал поступает на второй усилитель промежуточной частоты, который выполняет функцию усиления выделенного потока данных шириной МГц на частоте 70 МГц.
Таким образом, за счёт перестройки первого гетеродина с заданным шагом частот и фиксированной частоте второго гетеродина обеспечивается выделение любого из 12-ти стволов шириной МГц и перенос его на несущую частоту 70 МГц.
Дальнейнее преобразование информационного сигнала происходит в демодуляторе.
3.3. Выбор системы АРУ
АРУ применяется для расширения динамического диапазона приёмника и поддержания в заданных пределах выходного напряжения. При этом устраняются перегрузки в каскадах при приёме сильных сигналов и, таким образом, предотвращается появление недопустимых нелинейных искажений и достигается нормальная работа демодуляторов.
Принцип действия системы АРУ состоит в автоматическом изменении коэффициентов усиления (передачи) отдельных каскадов приёмника при изменении уровня принимаемого сигнала. Система АРУ должна содержать регулируемые каскады усиления и цепь регулирования. Цепь регулирования вырабатывает управляющее напряжение, воздействующее на регулируемые элементы усилительного тракта. Обычно ЦР содержит выпрямитель (амплитудный детектор) и ФНЧ.
В качестве АРУ выберем систему АРУ с обратным регулированием, которая находит наиболее широкое применение (рис. 3.3). В данной системе управляющее напряжение определяется уровнем напряжения сигнала на выходе регулируемого каскада. Такая система АРУ является наиболее простой и позволяет получить амплитудную характеристику приёмника, близкой к идеальной.
Рис. 3.3. Структурная схема системы АРУ с обратным регулированием
В СВЧ трактах регулируемыми каскадами являются обычно каскады МШУ и УПЧ. Как правило регулируют усиление каскадов, усиливающих сигналы сравнительно малого уровня. Регулировка усиления в одном из последних каскадов нежелательна, а иногда и недопустима, поскольку при больших уровнях сигнала на входе регулируемого каскада трудно избежать больших нелинейных искажений. С учётом сказанного регулировку усиления необходимо применить в МШУ.
В каскадах на ПТШ для регулировки усиления используют зависимость крутизны стоко-затворной характеристики от напряжения на затворе.
Регулировка усиления каскада на ПТШ может быть обратной и прямой. При обратной регулировке, когда транзистор запирается с целью уменьшения усиления, для получения большей чувствительности регулировки необходимо, чтобы сопротивление нагрузки каскада было много меньше внутреннего сопротивления транзистора, а сопротивление источника сигнала было много меньше входного сопротивления каскада.
Наиболее часто используют прямую регулировку усиления. В каскадах на ПТШ она осу-
ществляется путём изменения напряжения смещения на затворе, что приводит к изменению то-ка транзистора, а следовательно и коэффициента усиления каскада.
3.4 Распределение усиления по трактам приёмника
Расчёт коэффициентов передачи трактов приёмника произведём по методике, изложенной
в работе [10] исходя из реальной чувствительности приёмника мкВ и допустимых амплитуд на входах:
- первого смесителя ;
- второго смесителя ;
- демодулятора (для частотного и фазового).
Мощность сигнала на входе демодулятора (выходе приёмника) составит:
Вт = 20 мВт или дБВт
Требуемый коэффициент усиления приёмного тракта составит:
дБ
Коэффициент усиления приёмного тракта определяется как сумма усилений и затуханий, вносимых его каскадами. Для структурной схемы тракта, приведенной на рис.2.5:
(3.1)
где – коэффициент усиления МШУ;
– коэффициенты усиления УПЧ1 и УПЧ2 соответственно;
– потери преобразования в первом и во втором смесителе. Для балансного
смесителя .
Примем мкВ, мВ, В.
Для обеспечения величины с учётом потерь преобразования в смесителях и допустимых амплитуд напряжений на их входах, коэффициенты усиления УРЧ, УПЧ1 и УПЧ2
рассчитываются следующим образом:
дБ,
где = 5...10 – коэффициент запаса усиления.
Проверим полученные результаты. Подставляя полученные значения коэффициентов усиления трактов в выражение (3.1) получим :
Таким образом можно сделать вывод, что требуемый коэффициент усиления приёмного тракта обеспечивается.
На основании полученных данных составляем функциональную схему тракта (рис.3.4)
3.3 Формулировка требований к приёмной системе
Итак, на основе проведенного энергетического расчёта а также распределения усиления по трактам приёмника сформулируем основные требования:
1) обеспечение реальной чувствительности не хуже дБВт;
2) обеспечение коэффициента усиления приёмного тракта не менее дБ;
3) обеспечение требуемого по ТЗ подавления помех по зеркальному каналу, каналу ПЧ, соседнему каналу приёма;
4) обеспечение суммарного коэффициента шума приёмного тракта не более дБ.
Рис.3.4. Функциональная схема приёмного СВЧ тракта
4. Выбор и расчёт СВЧ малошумящего усилителя
4.1. Бесструктурные модели транзистора СВЧ
В основу расчёта и анализа транзисторного МШУ СВЧ должна быть положена модель транзистора. Это может быть структурная (физическая) модель, т. е. эквивалентная схема тран-зистора, либо бесструктурная модель, представляющая транзистор в виде эквивалентного четырёхполюсника.
Преимуществом структурной модели является высокая информативность; эквивалентная схема характеризует поведение транзистора в диапазоне частот и позволяет устанавливать связь между её элементами и характеристиками транзистора. Бесструктурная модель транзистора менее информативна, она строго справедлива лишь на одной частоте. Для определения частотной зависимости параметров транзистора надо провести измерения на разных частотах. Однако бесструктурные модели более точны, поскольку их параметры могут быть измерены значительно точнее, чем параметры эквивалентной схемы.
Страницы: 1, 2, 3, 4, 5, 6