Вывод: Таким образом при вычислении получилось, что вероятность потерь на АТС–72/79 S–12 составила E = 0, 99602 при заданных значениях:
АвознАТС72/79 =624,99 Эрл
V =3200 каналов
N=17000
Это говорит о том, что вероятность потерять вызов в цифровой коммутационной системе S–12 очень мала, что означает пропускная способность системы очень велика и она является практически не блокируемой системой.
Основными преимуществами общеканальной системы сигнализации 7 являются:
– скорость - время установления соединения не превышает одной секунды;
– высокая производительность - один канал сигнализации способен одновременно обслуживать до тысячи разговорных каналов;
– экономичность - минимальное количество оборудования на коммутационной станции;
– надежность - возможность альтернативной маршрутизации в сети сигнализации;
– гибкость - возможность передачи любых данных (телефонии, цифровых сетей с интеграцией служб, сетей подвижной связи, интеллектуальных сетей и т.д.).
ОКС-7 на данный момент является системой, обладающей огромным потенциалом. Изначально в нее были заложены большие возможности для управления другими, еще не существующими услугами связи. Сейчас ОКС-7 является обязательным элементом следующих цифровых сетей связи:
– телефонной сети общего пользования (ТФОП, PSTN);
– цифровой сети с интеграцией служб (ЦСИС, ISDN);
– сети связи с подвижными системами (ССПС, PLMN);
– интеллектуальной сети (ИС, IN).
4.4.1 Расчет сигнальной нагрузки
Расчет сети сигнализации производится для определения объема оборудования, набора подсистем системы сигнализации ОКС-7.
Функционирование сети сигнализации должно осуществляться в соответствии с требованиями МСЭ-Т на следующие качественные характеристики:
– вероятность задержки сигнальной единицы на звене сигнализации более чем на 300 мс не должна превышать 10–4 (рекомендация МСЭ-Т Q.725);
– время простоя пучка маршрутов сигнализации не должно превышать 10 минут в год (рекомендация МСЭ-Т Q.706).
В соответствии с рекомендациями МСЭ-Т нормальной загрузкой звена сигнализации считается загрузка 0,2 Эрл. Обеспечить требования на допустимое время простоя можно путем применения различных вариантов избыточности структурных элементов сети.
В зависимости от структуры сети сигнализации и возможностей по реконфигурации сигнального оборудования достичь требуемой избыточности можно путем использования различных вариантов:
– избыточность оконечного оборудования;
– избыточность звеньев сигнализации внутри пучка;
– избыточность сигнальных маршрутов для каждого пункта назначения.
Для обеспечения надежности сети может применяться дублирование звеньев сигнализации.
Нагрузка на звено ОКС-7 равна:
(4.33)
где –число удачных вызовов в секунду, приходящихся на пучок каналов емкостью С; (4.34)
– число неудачных вызовов в секунду, приходящихся на пучок каналов емкостью С; (4.35)
С - число каналов, обслуживаемых конкретным звеном сигнализации;
А - средняя нагрузка на разговорный канал, Эрл;
пучок каналов емкостью С;
Мeff - среднее число сигнальных единиц, которыми обмениваются пункты сигнализации для обслуживания удачных вызовов.
Mineff - среднее число сигнальных единиц, которыми обмениваются пункты;
Сигнализации для обслуживания неудачных вызовов;
Leff –средняя длина сигнальных единиц для удачных вызовов, байт;
L ineff - средняя длина сигнальных единиц для неудачных вызовов, байт;
Т eff - среднее время занятия канала для удачных вызовов, сек.;
Т ineff - среднее время занятия канала для неудачных вызовов, сек.;
Хeff - число от “0” до “1” являющиеся отношением количества удачных вызовов к общему количеству вызовов.
Хeff - средняя длина сигнальной единицы для удачного вызова, Leff, составляет 68 байт, так как для передачи номера вызываемого абонента необходимо передать семь в шестнадцатеричном коде, который будет составлять четыре байта информации.
Средняя длина сигнальной единицы для неудачного вызова, Line, равна 65 байт, так как при неудачном вызове в информационном поле передается один знак, занимающий один байт информации.
Среднее время занятия канала для удачного вызова:
Т eff =(tcо +n×tn+tу+tпв +Тi), (4.36)
где tco-время слушания сигнала <<ответ станции>>;
tco n tn –время набора n знаков номера;
tco n tn tпв –время посылки вызова вызываемому абоненту;
tco n tn tпв Тi-средняя длительность разговора.
tco n tn tпв Тi
Teff=(3+6 × 0,8+2+7,5+110)=127с
Среднее время занятия канала для неудачного вызова рассчитывается аналогично, за исключением времени разговора:
Tineff =( tcо +n × tn+tу+tпв), (4.37)
Tineff =(3+6×0,8+2+7,5)=17c.
Cреднее число сигнальных единиц, которыми обмениваются пункты сигнализации для обеспечения удачного вызова:
– начальное адресное сообщение (IAM);
– запрос информации (INR);
– сообщение о принятии полного адреса (ACM);
– сообщение ответа (ANM);
– подтверждение выполнения модификации соединения (CMC);
– отказ модифицировать соединение (RCM);
– блокировка (BLO);
– подтверждение блокировки (BLA);
– сообщение ответа от абонента устройства с автоматическим ответом (например, терминал передачи данных) (CON);
– освобождение (REL);
– завершение освобождения (RLC).
– Среднее число сигнальных единиц, которыми обмениваются пункты сигнализации для обслуживания неудачного вызова:
– рассчитаем среднюю нагрузку на разговорный канал.
Нагрузка взята со схемы распределения нагрузок для направлений, использующих ОКС7: АТСЭпр-72/79 – АТСЭ91, АТСЭ92, ОПТС3, ОПТС4, , АМТС.
Средняя нагрузка на разговорный канал АТСЭпр-72/79 – АТСЭ91 Y=14 Эрл.
А- удельная нагрузка.
При емкости каналов С=21, отсюда А= А= (4.6)
Нагрузка на разговорные канал между АТСЭпр – АТСЭ92 Y=11Эрл. При емкости каналов С=17, отсюда А=.
Нагрузка на разговорные канал между АТСЭпр – ОПТС3 Y=161Эрл. При емкости каналов С=180, А=.
Нагрузка на разговорные канал между АТСЭпр – ОПТС4, Y=43 Эрл. При емкости каналов С=53 А=
Нагрузка на разговорные канал между АТСЭпр – АМТС, Y=30 Эрл. При емкости каналов С=42 А=
Средняя нагрузка на разговорный канал:
А=
Средняя нагрузка на разговорный канал равна =0,6 Эрл.
Отношение количества удачных разговоров к общему числу вызовов.
Возьмем статистические данные каналов, которые работают по ОКС-7 за 06-01-03, за 13-01-03, за 07-02-03.
Таблица 4.1 - Показатели качества обслуживания вызова
Дата
Попытки
Ответы
06.01.03
с АМТС на АТС521
1105
532
с АМТС на АТС-51/52
1131
432
13.01.03
1009
558
780
527
07.02.03
799
282
733
519
Из данных, приведенных выше, найдем отношение количества удачных разговоров к общему числу вызовов с АМТС на АТС521
(4.38)
;
Среднее отношение количества удачных разговоров к общему числу вызовов с АМТС на АТС521;
.
Отношение количества удачных разговоров к общему числу вызовов с АМТС на АТС-51/52.
Среднее отношение количества удачных разговоров к общему числу вызовов АМТС на АТС-51/52.
Среднее отношение количества удачных разговоров к общему числу вызовов-0,54. По приведенным выше формулам и таблице распределения каналов по направлениям рассчитаем сигнальную нагрузку. Если нагрузка на один ОКС будет превышать 0,2 Эрл, то звенья сигнализации увеличиваются пропорционально нагрузке.
На участке STP1и STP2 при емкости каналов С=180
Эрл
Число каналов сигнализации равно 1. По приведенным выше формулам была составлена программа, представленная в приложении Е, результаты расчета сведены в таблицу 4.2.
Таблица 4.2 - Число каналов сигнализации по направлениям
STP2
STP3
STP4
SP1
SP2
SТP5
STP1
2
1
Нумерация кодов пунктов сигнализации.
Для идентификации пунктов сигнализации (ПС) любых сетей ОКС используется 14-битовый двоичный код (в соответствии с рекомендациями ITU-T).
Код международного ПС должен присваиваться каждому пункту сигнализации, принадлежащему к международной сети сигнализации.
Один физический узел сети может быть более одного кода ПС. Нумерация кодов международных ПС определена в рекомендации Q.708 приведены в таблице 4.3.
Таблица 4.3 - Нумерация кодов
Наименование
Десятичный код
Бинарный код
АМТС STP1 513
01-000-1
00001 0000000 01
ОПТС3 STP2 532
01-005-0
00001 0000101 00
ОПТС4 STP3 540
01-007-0
00001 0000111 00
УВС5/9 STP4 520
01-002-0
00001 0000010 00
АТС-70/72 SP1 523
01-002-3
00001 0000010 11
АТС-76/77 SP2 522
01-007-2
00001 0000111 10
АТСЭ-79 SТP5 535
01-005-3
00001 0000101 11
Вывод: Таким образом, из анализа работы СМО следует, что половина сигнальных единиц получают отказ в обслуживании. Поэтому из этого следует, что длину очереди необходимо увеличить в два раза и сократить время обслуживания одной сигнальной единицы.
4.5 Расчет производительности центрального управляющего устройства
Вернемся к СМО, изображенной на рисунке 4.1. Оставив исходные предположения прежними, изменим дисциплину обслуживания. Любой вызов обслуживается по командам управляющего устройства (УУ), которое получает информацию о поступлении вызова, его параметрах (номере входа, по которому поступил вызов, и номере направления, с которым необходимо установить соединение), о состоянии КП (т. е. по каким именно путям проходят уже установленные соединения) и т. д. При возможности немедленного установления соединения УУ устанавливает его; в противном случае УУ ставит поступившие вызовы на ожидание и обслуживает их по мере освобождения занятых линий в порядке очереди. Число мест ожидания предполагается бесконечно большим. Определим вероятности различных состояний такой СМО и функцию распределения времени ожидания (ФРВО). Из результатов следует, что вероятность состояния {х}, из которого первый же поступивший вызов переводится в ожидание.
Рисунок 4.1 - Диаграмма переходов Марковской цепи с ожиданием
где вероятность «0» определяется с учетом диаграммы переходов Марковской цепи с ожиданием представлена на рисунке 4.1.
Из диаграммы следует, что вызов, поступивший в состоянии {х}, будет
поставлен на k-e место ожидания с вероятностью:
k=1, 2, 3, …, (4.1)
Поэтому вероятность того, что вызов, поступивший в состоянии {х} либо заблокирует последующие вызовы, либо сам встанет на ожидание,
Из условия нормировки следует, что:
откуда , а с учетом того, что получим:
Окончательно:
Вероятность найти в состоянии [х] все линии занятыми («вероятность ожидания») или, что то же самое, вероятность того, что время ожидания больше нуля,
После того, как вероятности состояний найдены, перейдем к определению функции распределения времени начала обслуживания вызова.
Пусть Px{y>t) — вероятность того, что для поступившего в состоянии {x} в произвольный момент вызова время ожидания будет больше, чем t. Обозначим через Рv+k(g>t) условную вероятность того же неравенства в предположении, что вызов застал систему на k-м месте ожидания. По формуле полной вероятности:
, (4.2)
где Pv+k(g>t)—вероятность того, что за промежуток времени длиной t после момента поступления рассматриваемого вызова произойдет не более k освобождений, поскольку наш вызов начинает обслуживаться после (k+1)-го освобождения, являясь (k+1)-м в очереди в момент своего поступления. Поток освобождений за время ожидания вызова представляет собой простейший поток с параметром хm, так как вероятность того, что не произойдет ни одного освобождения за время t, равна е-xmt Для простейшего потока с параметром хm вероятность освобождения
не более k вызовов за время t равна поэтому:
, (4.3)
Подставляя в формулу 4.3 в 4.2 и используя 4.1, получаем:
(4.4)
Выражение 4.4 может быть использовано для расчета времени ожидания начала обслуживания вызова в системах коммутации с внутренними блокировками при условии нахождения СМО в состоянии {х}.Поскольку Px(g>t)—нормированная величина, из 4.4 легко находятся практически более полезные характеристики—вероятность ожидания начала обслуживания за время более, чем t и среднее время ожидания начала обслуживания:
Для этого рассмотрим алгоритм обслуживания сетевого соединения представлена на рисунке 4.2, который описывается многофазной однолинейной СМО с n ступенями ожидания.
Рисунок 4.2 - Упрощенный алгоритм прохождения очередей при установлении соединения на сети связи
Для нахождения времени ожидания конца обслуживания на каждой ступени воспользуемся моделью однофазной однолинейной СМО вида М/М/1/¥ с учетом того, что оно складывается из времени ожидания начала обслуживания и времени самого обслуживания, которые, в свою очередь, описываются соответствующими функциями распределения
где F(t-)—функция распределения времени ожидания (ФРВО) начала обслуживания; F(p-)—ее изображение (преобразование Лапласа); F(t)—ФРВО самого обслуживания; F(p)—ее изображение; F(l+)—ФРВО конца обслуживания; *—символ свертки, L -1—оператор обратного преобразования Лапласа.
Напомним, что —параметр суммарного потока вызовов, а mc — параметр (интенсивность) обслуживания потока вызовов ЦУУ на одной ступени ожидания.
Изображение суммарного времени ожидания конца обслуживания в многофазной однолинейной СМО после п-й ступени ожидания находим, используя преобразование Лапласа—Стилтьеса и теорему о свертке
(4.5)
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12