Рефераты. Электроснабжение 8-го микрорайона города Оренбурга






При наличии центролизованного резерва трансформаторов и возможности замены поврежденного трансформатора за время не более 1 суток допускается питание электроприемников II категории от одного трансформатора.

Для выбора мощности трансформаторов определяется максимальная полная мощность, приходящаяся на подстанцию:


(7.1.1)

 

 

где PΣmax – суммарная активная мощность, кВт;

cosφср.взв – средневзвешенное значение cosφ, который определяется через tg φср.взв:

(7.1.2)

 

 

Мощность одного трансформатора определяется по формуле:


(7.1.3)


 

где К3прин- принимаемый коэффициент загрузки трансформатора,

К3 прин.=0,7

По определенной мощности одного трансформатора находится ближайшая стандартная мощность трансформатора Sном и выбирается тип трансформатора. Выбранные трансформаторы повторяются по действительному коэффициенту загрузки:


(7.1.4)

 

 

 

K3дейст≤К3прин


Пример расчета мощности трансформаторов потребительской подстанции № 3 приведен в таблице 8.


Таблица 8 – Потребители  ТП № 3

Наименование объекта

Р, кВт

Q, кВАр

сos φ

tg φ

Жилой дом № 31

49,7

14,41

0,96

0,29

Жилой дом № 20

42

12,18

0,96

0,29

Жилой дом № 12

79,1

36,23

0,91

0,458

Жилой дом № 14

53,24

19,9

0,94

0,374

Жилой дом № 28

52

15,1

0,96

0,29

Жилой дом № 26

52

15,1

0,96

0,29

Магазин № 45

22

16,5

0,8

0,75

Наружное освещение

5,94

2,87

0,9

0,484

ΣР=49,7+42+79,1+53,24+52+52+22+5,94=355,94 кВт;

ΣQ=14,41+12,18+36,23+19,9+15,1+15,1+16,5+2,87=132,27 кВАр;



Суммарная расчетная активная мощность PΣmax, определяется при питании от трансформаторной подстанции жилых домов и общественных зданий по формуле:


PΣmax= Pзд.max+Pзд.1*К1+ Pзд.2*К2+…+ Pзд.n*Кn,                                           (7.1.5)


где Pзд.max - наибольшая из электрических нагрузок, питаемой подстанцией, кВт;

       Pзд.1, Pзд.2, Pзд.n - расчетные нагрузки зданий, кВт;

       К1, К2, Кn – коэффициенты, учитывающие несовпадение максимумов нагрузки (квартир и общественных зданий) /2/.


PΣmax=49,7+42+79,1+53,24+52+52+22*0,8+5,94=355,64 кВт



Мощность одного трансформатора:


Принимаем два трансформатора типа ТМ-250/10/0,4 кВ


Sнт=250 кВА


Проверяем выбранные трансформаторы по действительному коэффициенту загрузки:



Расчет мощности трансформаторов других подстанций проводится аналогично. Результаты расчетов сводятся в таблицу 9.

7.2 Проверка трансформаторов на систематическую перегрузку



Систематическая перегрузка трансформатора допустима за счет неравномерности нагрузки его в течении суток (года). Определяется коэффициент перегрузки К*нт трансформаторов:


(7.2.1)



Если К*нт≥1, то трансформаторы не испытывают систематической нагрузки и проверка не требуется /7/.



1,32>1


Проверка трансформаторов на систематическую перегрузку не требуется.

Проверка трансформаторов на других ТП на систематическую перегрузку проводится аналогично, данные расчетов снесены в таблицу 10.

7.3 Проверка трансформаторов на аварийную перегрузку


Аварийная перегрузка допускается в исключительных условиях (аварийных) в течении ограниченного времени, когда перерыв в энергоснабжении потребителей недопустим.

На аварийную перегрузку проверяются трансформаторы, если на подстанции установлено не менее двух трансформаторов. В качестве аварийного режима рассматривается режим с отключением одного трансформатора.

Определяется коэффициент перегрузки К*нт в аварийном режиме:

         (7.3.1)




Наносится К*нтав на суточный график нагрузки (рисунок 2). Определяется, по точкам пересечения К*нтав с графиком нагрузки, время перегрузки, tn=5 ч.

Определяется коэффициент начальной загрузки в аварийном режиме:

                

                Рисунок 2 – Зимний суточный график нагрузки



                                       

(7.3.2)



где Si – мощность i-го участка времени;

Δti – временной участок, г;

tn – время перегрузки за сутки, ч.



По таблице «Нормы максимально допустимых систематических и аварийных перегрузок трансформаторов» /12/ в зависимости от эквивалентной температуры охлаждающей среды Θохл, от системы охлаждения трансформатора, от коэффициента начальной загрузки К1ав и от времени перегрузки Tn, определяется коэффициент допустимой аварийной перегрузки Кдоп.ав.

Θохл для Оренбурга составляет – 13,4ºС.

Система трансформатора – М – с естественной циркуляцией воздуха и масла.

Время перегрузки Tn – 6 часов.

К г.доп.ав=1,7

Проверка трансформатора на аварийную перегрузку:


(7.3.3)


250*1,7≥378,34


425кВА>378,34кВА


Выбранные трансформаторы ТП№3 удовлетворяют условиям проверки на аварийную перегрузку.

Проверка трансформаторов на аварийную перегрузку проводится аналогично. Результаты расчетов снесены в таблицу 10.


Таблица 10 Проверка трансформаторов на систематическую и аварийную перегрузку

№ ТП

К*нт

К*нтав

К1ав

К2доп

Sнт*К2доп, кВА

Sm, кВА

ТП № 1

1,26

0,6

0,63

1,6

256

249

ТП № 2

1,45

0,7

0,56

1,7

425

344

ТП № 4

1,65

0,8

0,52

1,8

720

484

ТП № 5

1,84

0,9

0,49

1,9

760

433

ТП № 6

1,45

0,7

0,56

1,7

680

550


8 Выбор схемы распределительных сетей ВН


Распределение электроэнергии от РП до потребительских ТП осуществляется по распределительным сетям 10 кВ. Распределительная и питающая сети 10 кВ используются для совместного питания городских коммунально-бытовых объектов. Городские сети 10 кВ выполняются с изолированной нейтралью /1/.


Схем построения городских распределительных сетей довольно много. Выбор схемы зависит от требования высокой степени надежности электроснабжения, а также от территориального расположения потребителей относительно РП и относительно друг друга.

Следует учитывать, что к электрической сети предъявляются определенные технико-экономические требования, с учетом которых и производится выбор наиболее приемлемого варианта.

Экономические требования сводятся к достижению по мере возможности наименьшей стоимости передачи электрической энергии по сети, поэтому следует стремится к снижению капитальных затрат на строительство сети. Необходимо также принимать меры к уменьшению ежегодных расходов на эксплуатацию электрической сети. Одновременный учет капитальных вложений и эксплуатационных расходов может быть произведен с помощью метода приведенных затрат. В связи с этим оценка экономичности варианта электрической сети производится по приведенным затратам.

Выбор наиболее приемлемого варианта , удовлетворяющего технико-экономическим требованиям, - это один из основных вопросов при проектировании любого инженерного сооружения, в том числе и электрической сети.


Рассмотрим  схемы электрических сетей заданного района, а также проанализируем их достоинства и недостатки, с тем, чтобы выбрать наилучшие варианты для технико-экономического сравнения.


Распределительные сети ВН выполняются по схемам: радиальной (одностороннего питания), магистральной, по разомкнутой петлевой с АВР, по замкнутой петлевой.


Представлен вариант распределительных сетей, выполненный по радиальной или магистральной схеме (рисунок 3), так как данный вариант является наиболее простым и не дорогим.

Рисунок 3 –  Схемы распределительных сетей


Характерной особенностью этих схем является одностороннее электроснабжение потребителей. При аварии на любом участке линии Л1 и Л2 или на шинах 10 кВ подстанции автоматически отключится головной масляный выключатель В1 или В2 и вне подстанции прекращают подачу электроэнергии потребителям на время ремонта. Такие схемы применяются для потребителей III категории, так как в этих схемах отсутствуют резервное питание и осуществляется минимальная надежность электроснабжения.




Широко в городских сетях применяется распределительная сеть 10 кВ выполненная по кольцевой схеме (рисунок 4). Эта схема дает возможность двухстороннего питания каждой ТП. При повреждении какого-либо участка каждая ТП будет получать питание, согласно обеспеченной надежности электроснабжения потребителей.


Рисунок 4 – Кольцевая схема электроснабжения






Для увеличения электроснабжения магистральная сеть выполняется с двумя источниками питания (от разных секущих шин РП) рисунок 5.




Рисунок 5 – Магистральная схема электроснабжения


В дипломном проекте для сравнения рассматриваются две схемы распределительных сетей ВН: кольцевая схема электроснабжения и магистральная схема с двумя источниками питания.

Согласно /4/ электрические сети 10 кВ на территории городов, в районах застройки зданиями высотой 4 этажа и выше выполняются, как правило, кабельными. Кабельные линии прокладывают в траншеях на глубине не менее 0,7 м /1/.

9 Предварительный выбор сечения кабельной линии 10 кВ


В соответствии с /3/ сечение кабелей с алюминиевыми жилами в распределительных сетях 10кВ при прокладке их в земляных траншеях, следует принимать не менее 35 мм2. Выбор экономически целесообразного сечения производится по экономической плотности тока в зависимости от металла провода и числа часов использования максимума нагрузки /1/:


(9.1)



где  Im – расчетный максимальный ток, А;

jэ – нормальное значение экономической плотности тока, А/мм2,


jэ=1,6 А/мм2 /3/


(9.2)


где Sm – максимальная расчетная мощность, передающаяся по кабелю, кВА;


(9.3)


Выбираем сечение кабеля на участке п/ст «Шелковая» - РП с ТП-2 (Рисунок 6).


(.9.4)


где  Ку=0,8  /2/

РΣi – суммарная расчетная нагрузка i-й ТП.


Рm0-2=( РΣ1+ РΣ2+ РΣ3+ РΣ4+ РΣ5+ РΣ6)*0,8=(355,64+237+323+450,4+417+

+512)*0,8=1836 кВ


cos φ=0,92 -  на шинах РП /2/


tg φ=0,43


Qm0-2= Qm0-1*tg φ=1836*0,43=789,5 кВт





Выбираем кабель марки ААБ с сечением жилы 95 мм2  Iдоп = 240А


Расчет кольцевой распределительной сети 10 кВ


Рисунок 6 – Расчетная схема распределительных сетей 10 кВ, Вариант I, кольцевая схема.


Выбираем сечения кабелей распределительной сети 10 кВ от РП.

Определяется точка потокораздела:



Проверка:


S21+S23=ΣSm


1015,2+1078,8=2094


2094 кВА=2094 кВА


Потоки мощности по участкам:

S36=S23-S3=1078,8-378=700,8 кВА;

S65=S36-S6=700,8-550=150,8 кВА;

S54=S65-S5=150,8-433=-282,2 кВА;

S14=S12-S1=1015,2-249=766,2 кВА;

S45=S14-S4=766,2-484=282,2 кВА;

S56=S45-S5=282,2-433=-150,8 кВА;


ТП-5 является точкой потокораздела:

P21=S21*cos φср.вз.=1015,2*0,94=954,3 кВт;

P23=S23*cos φср.вз.=1078,8*0,94=1014 кВт;

P36=S36*cos φср.вз.=700,2*0,94=658,2 кВт;

P65=S65*cos φср.вз.=150,8*0,94=141,75 кВт;

P14=S14*cos φср.вз.=766,2*0,94=720,2 кВт;

P45=S45*cos φср.вз.=282,2*0,94=265,3 кВт.


Определяется ток на каждом участке сети 10 кВ:

(9.5)

 








По определенному току рассчитывается экономическая плотность тока и принимается стандартное большее сечение кабеля. Марка кабеля – ААБ, стандартное сечение кабеля 35-240 мм2 /9/.


F21=36,7 мм2; Fст.21=50 мм2;  Iдоп=140 А

F14=27,7 мм2; Fст.14=35 мм2;  Iдоп=115 А

F45=10,2 мм2; Fст.45=35 мм2;  Iдоп=115 А

F56=5,4 мм2; Fст.56=35 мм2;  Iдоп=115 А

F63=25,3 мм2; Fст.63=35 мм2;  Iдоп=115 А

F23=39 мм2; Fст.23=50 мм2;  Iдоп=140 А


Производится проверка выбранных сечений кабеля в аварийных режимах: обрыв линии 1-2 или обрыв линии 2-3. Питание распределительной сети 10 кВ осуществляется от одной из двух секций шин РП-10кВ. Расчет производится аналогично расчету в нормальном режиме. Результаты расчетов снесены в таблицу 11.

Обрыв участка

№ i-го участка

Siав, кВА

Рiав, кВт

Iiав, А

Fст., мм2

Uдоп,А

Fст.принятое, мм2

1-2

2-3

2094

1968

121

50

140

50

3-6

1716

1613

99,2

35

115

35

6-5

1166

1094

67,4

35

115

35

5-4

733

689

42,4

35

115

35

4,1

249

234

14,4

35

115

35

2-3

1-2

2094

1968

121

50

140

50

1-4

1845

1734

107

35

115

35

4-5

1361

1279

79

35

115

35

5-6

928

872

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.