Рефераты. Выбор схемы развития районной электрической сети






-         в аварийных – 10%

-         в нормальных режимах – (9,5-10,5)кВ;

-         в аврийных режимах – (9-11)кВ.

В проектируемой электрической сети предусмотрены средства регулирования напряжения. На электростанции с помощью изменения тока возбуждения может быть изменена выдача реактивной мощности ГРЭС. Допустимые колебания реактивной мощности при выдаче номинальной активной соответствуют допустимым значениям  на ГРЭС и приведены в табл. 4.1


Таблица 4.1

Допустимые значения реактивной мощности ГРЭС.


Активная мощность ГРЭС, МВт

Реактивная мощность ГРЭС, МВар

800

0,95

262

800

0,8

600


 Регулирование напряжения на подстанции может быть выполнено с помощью РПН трансформаторов, позволяющих менять коэффициент трансформации под нагрузкой. На трансформаторах ТРДН-25000/110 пределы регулирования составляют  в нейтрале обмотки высокого напряжения. При расчёте с помощью вычислительного комплекса RASTR коэффициенты трансформации вычисляются как отношение напряжения низшей обмотки к напряжению высшей и поэтому всегда меньше единицы. Значения коэффициентов трансформации ТРДН-25000/110 приведены в табл.4.2.


 Таблица 4.2

Значения коэффициента трансформации трансформатора ТРДН-25000/110.


Номер отпайки

Коэффициент трансформации

Номер отпайки

Коэффициент трансформации

0

0,091

+1

0,09

-9

0,109

+2

0,088

-8

0,106

+3

0,087

-7

0,104

+4

0,085

-6

0,102

+5

0,084

-5

0,1

+6

0,082

-4

0,098

+7

0,081

-3

0,097

+8

0,08

-2

0,095

+9

0,079

-1

0,093




Расчёты параметров установившихся режимов приведены для следующих ниже вариантах.


Нормальный режим максимальных нагрузок (рис.4.1, приложение I-3)

При проведении анализа выявлено, что во всех узлах нагрузки
напряжение в допустимых пределах. Напряжение на подстанции 10 в
норме - 10,1кВ. Коэффициенты трансформации на трансформаторах ГРЭС и в узле 5 – номинальные, в узлах распределительной сети коэффициенты трансформации равны:

-         Узел 8 – 0,093 (№ отпайки  -0);

-         Узел 7 – 0,095 (№ отпайки  -1);

-         Узел  9 – 0,095 (№ отпайки -1);

-         Узел  10 – 0,098 (№ отпайки  -1).


Аварийный режим максимальных нагрузокотключение одного из  автотрансформаторов. Для ввода режима в допустимую область потребовалось установить коэффициент трансформации:

-         Узел 8 – 0,1 (№ отпайки  -2);

-         Узел 7 – 0,1 (№ отпайки  -4);

-         Узел  9 – 0,1 (№ отпайки -5);

-         Узел  10 – 0,106 (№ отпайки  -4).

Напряжение на шинах 10кВ потребителя соответствует требованиям ГОСТ и равно 10,0кВ. Результаты расчёта приведены на Рис.4.2 и приложении I-3.


Аварийный режим максимальных нагрузокотключение линии 5-1000. Для ввода режима в допустимую область потребовалось установить коэффициент трансформации:

-         Узел 8 – 0,1 (№ отпайки  -5);

-         Узел 7 – 0,1 (№ отпайки  -4);

-         Узел  9 – 0,1 (№ отпайки -4);

-         Узел  10 – 0,106 (№ отпайки  -4).

Напряжение на шинах 10кВ потребителя соответствует требованиям ГОСТ и равно 10,0кВ. Результаты расчёта приведены на Рис.4.3 и приложении I-3.


Аварийный режим максимальных нагрузокотключение одного из  трансформаторов узла 10. Для ввода режима в допустимую область потребовалось установить коэффициент трансформации:

-         Узел 8 – 0,095 (№ отпайки  -2);

-         Узел 7 – 0,095 (№ отпайки  -2);

-         Узел  9 – 0,095 (№ отпайки -2);

-         Узел  10 – 0,109 (№ отпайки  -9).

Напряжение на шинах 10кВ потребителя соответствует требованиям ГОСТ и равно 9,8кВ. Результаты расчёта приведены на Рис.4.5 и приложении I-3.


 Таким образом, анализ установившихся режимов наилучшего варианта развития сети позволяет сделать вывод о том, что качество электроэнергии в выбранном варианте соответствует ГОСТ и дополнительных средств регулирования напряжения не требуется.



























































































































































































































 

5.                РАСЧЁТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ.


Расчёт токов короткого замыкания (ТКЗ)  выполняется для обоснования выбора оборудования подстанций и средств релейной защиты и автоматики.

При расчёте ТКЗ обычно используются следующие допущения:

-         Не учитываются токи нагрузок, токи намагничивания трансформаторов, ёмкостные токи линий электропередач;

-         Не учитываются активные сопротивления генераторов;

-         Трёхфазная сеть рассматривается, как строго симметричная.

Схема замещения для расчёта ТКЗ составляется по расчётной схеме электрической сети. Все элементы сети замещаются соответствующим сопротивлением и указываются ЭДС источников питания. Затем схема сети сворачивается относительно точки КЗ, источники питания объединяются и находится эквивалентная ЭДС схемы Еэкв и результирующее сопротивление сети от источников питания до точки КЗ Zэкв. По найденным результирующим ЭДС и сопротивлению находится периодическая составляющая суммарного тока короткого замыкания:

                                                                                (5.1)

Ударный ток короткого замыкания определяется как

                                                                           (5.2),

где - ударный коэффициент, который составляет (табл.5.1).

Расчёт ТКЗ выполняется для наиболее экономичного варианта развития электрической сети (вариантI рис.2.1) с установкой на подстанции 10 двух трансформаторов ТРДН-25000/110. Схема замещения сети для расчёта ТКЗ приведена на рис. 5.1. Синхронные генераторы в схеме представлены сверхпереходными ЭДС и сопротивлением  (для блоков 200МВт равным 0,19о.е.   и приведёнными к номинальному генераторному напряжению 15,75кВ). Параметры трансформаторов в расчётной схеме приведены к номинальному высшему напряжению, параметры линий электропередач определены по удельным сопротивлениям соответствующих сетей.

Определение периодической составляющей суммарного тока КЗ выполняется с использованием комплекса программы  «TKZ3000» . Основные результаты расчёта токов приведены в таблице 5.1 и в приложении I-2.




Таблица 5.1

Токи трёхфазного короткого замыкания.


Режим

Точка КЗ

Uном, кВ

Jmax, кА

Jуд, кА

1.     Параллельная работа трансформаторов с высокой и низкой стороны.

10


15

110


10

4.152


16.349

10.082


39.698

2.     Раздельная работа трансформаторов.

10


15

110


10

4.152


9.957

10.082


24.177

3.     Параллельная работа трансформаторов с высокой и низкой стороны, питание по одной ЛЭП.

10


15

110


10

3.377


15.119

8.200


36.712

4.     Раздельная работа трансформаторов по низкой стороне и параллельная работа трансформаторов по высокой стороне, питание по одной ЛЭП.

10


15

110


10

3.377


9.489

8.200


23.041




 
































































































6.                ГЛАВНАЯ СХЕМА ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ.


6.1.         Основные требования к главным схемам распределительных устройств.


Главная схема (ГС) электрических соединений энергообъекта – это совокупность основного электротехнического оборудования, коммутационной аппаратуры и токоведущих частей, отражающая порядок соединения их между собой.

В общем случае элементы главной схемы электрических соединений можно разделить на две части:

-         Внешние присоединения (далее присоединения);

-               Генераторы, блоки генератор-трансформатор, линия электропередач, шунтирующие реакторы;

-               Внутренние элементы, которые в свою очередь можно разделить на:

Схемообразующие  - элементы, образующие структуру схемы (коммутационная аппаратура – выключатели, разъединители, отделители и т.д., и токоведущие части – сборные шины, участки токопроводов, токоограничивающие реакторы);

-         Вспомогательные – элементы, предназначенные для обеспечения нормальной работы ГС (трансформаторы тока, напряжения, разрядники и т.д.).

Тенденция концентрации мощности на энергетических объектах остро ставит задачу проблемы надёжности и экономичности электрических систем (ЭЭС) в целом и в частности, проблему создания надёжных и экономичных главных схем электрических соединений энергообъектов и их распределительных устройств (РУ).

Благодаря  уникальности объектов и значительной неопределённости исходных данных процесс выбора главной схемы – всегда результат технико-экономического сравнения конкурентно способных вариантов, цель которого – выявить наиболее предпочтительный из них с точки зрения удовлетворения заданного набора качественных и количественных условий. Учёт экономических, технических и социальных последствий, связанных с различной степенью надёжности ГС, представляет в настоящее время наибольшую сложность этапа технико-экономического сравнения схем. Это связано, в первую очередь, с недостаточностью исходных данных (особенно статистических характеристик надёжности), сложностью формулирования и определения показателей надёжности ГС в целом и ущербов от недоотпуска электроэнергии и от нарушений устойчивости параллельной работы ЭЭС.

Основные назначения схем электрических соединений энергообъектов заключается в обеспечении связи присоединений между собой в различных режимах работы. Именно это определяет следующие основные требования к ГС:

-         Надёжность – повреждение в каком-либо Присоединении или внутреннем элементе, по возможности, не должны приводить к потере питания исправных присоединений;

-         Ремонтопригодность – вывод в ремонт, какого либо Присоединения или внутреннего элемента не должны, по возможности, приводить к потере питания исправных присоединений и снижению надёжности их питания;

-         Гибкость – возможность быстрого восстановления питания исправных присоединений;

-         Возможность расширения – возможность подключения к схеме новых присоединений без существенных изменений существующей части;

-         Простота и наглядность – для снижения возможных ошибок эксплуатационного персонала;

-         Экономичность – минимальная стоимость, при условии выполнения выше перечисленных требований.

Анализ надёжности схем электрических соединений осуществляется путём оценки последствий различных аварийных ситуаций, которые могут возникнуть на присоединениях и элементах ГС. Условно аварийные ситуации в ГС можно разбить на три группы:

-         аварийные ситуации  типа «отказ» - отказ какого-либо Присоединения  или элемента ГС, возникающий при нормально работающей ГС;

-         аварийные ситуации типа «ремонт» - ремонт какого-либо Присоединения или элемента ГС;

-         аварийные ситуации типа «ремонт+отказ» - отказ какого-либо Присоединения или элемента ГС, возникающий в период проведения ремонтов элементов ГС.

Все известные в настоящее время ГС основаны на следующих принципах подключения присоединений:

-         присоединение коммутируется одним выключателем;

-         присоединение коммутируется двумя выключателями;

-         присоединение коммутируется тремя и более выключателями;

В настоящее время разработано минимальное количество типовых схем РУ, охватывающих большинство встречающихся в практике случаев проектирования ПС и переключательных пунктов и позволяющих при этом достичь наиболее экономичных унифицированных решений. Для разработанного набора схем РУ выполняются типовые проектные решения компоновок сооружений, установки оборудования, устройств управления, релейной защиты, автоматики и строительной части ПС.

Применение типовых схем является обязательным при проектировании ПС.  Применение нетиповых схем допускается при наличии соответствующих технико-экономических обоснований.

Проектирование схем РУ ПС сводится к выбору схемы из числа типовых в соответствии с правилами их применения.




































6.2.         Выбор схемы распределительного устройства высокого напряжения (РУВН).



К РУВН проектируемой подстанции подключаются две ВЛ и два трансформатора.

Подстанция относится к классу тупиковых подстанций. Для данного класса напряжения, набора внешних присоединений и мощности трансформаторов, с учётом того, что применение отделителей в условиях холодного климата не рекомендуется, принимаем к установке на проектируемой подстанции схему два блока линия трансформатор с неавтоматической перемычкой. (рис.6.1).

       В нормальном режиме все коммутационное оборудование включено, за исключением разъединителей QS7 в ремонтной перемычке. ВЛ W1, W2 – линии, связывающие проектируемую подстанцию с энергосистемой.

       Рассмотрим последствия аварийных ситуаций в данной схеме:

       Отказ одного из трансформаторов (предположим Т1). При КЗ в Т1 происходит отключение выключателя Q1, питание потребителей подстанции осуществляется через Т2 с учётом его перегрузочной способностью.

       Отказ одной линии связи с электростанцией (W1). При КЗ на W1 происходит отключение выключателя Q1, трансформатор Т1 теряет питание. После отключения W1 оперативный персонал отключает повреждённую линию линейным разъединителем, после этого замыкается ранее отключенный QS7, происходит включение Q1 иТ1 и восстанавливает питание.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.