Напряжение в материале шины, возникающие при воздействии изгибающего момента, Мпа
(6.33)
Где W – момент сопротивления шины относительно оси, перпендикулярной действию усилия, см3
(6.34)
66,87
8,5
7,86
Шины механически прочны, если
– допустимое механическое напряжение в материале шин,
Выбранные шины механически прочны, т.к. 7,86< 75
6.8. Собственные нужды и оперативный ток.
Состав потребителей собственных нужд подстанции (СН) зависит от мощности трансформаторов, конструктивного выполнения подстанции, наличия синхронных компенсаторов, типа электрооборудования, способа обслуживания и вида оперативного тока.
Наименьшее количество потребителей СН на подстанциях, выполненных по упрощённым схемам, без синхронных компенсаторов – это электродвигатели обдува трансформаторов, обогрева приводов шкафов КРУН, а также освещение подстанции.
Наиболее ответственными потребителями СН подстанции являются оперативные цепи, система связи, телемеханики, система охлаждения трансформаторов, аварийное освещение, система пожаротушения, электроприёмники компрессорной.
Мощность потребителей СН невелика, поэтому они присоединяются к сети 380/220В, которая получает питание от понижающих трансформаторов.
Мощность трансформаторов СН выбирается по нагрузкам СН с учётом коэффициента загрузки и одновременности, при этом отдельно учитывается летняя и зимняя нагрузки, а также нагрузка в период ремонтных работ на подстанции.
Нагрузка СН подстанции определяется как по установленной мощности (Ру), с применением и подсчитывают по формуле:
(6.36)
где - коэффициент спроса, учитывающий коэффициенты одновременности и загрузки. В ориентировочных расчётах можно принять
При двух трансформаторах СН с постоянным дежурством, мощность трансформаторов выбирается из условия:
(6.37)
- коэффициент допустимой аварийной перегрузки, его можно принять равным 1,4.
Схема подключения ТСН выбирается из условия надёжного обеспечения питания ответственных потребителей. Выбираем схему питания СН с выпрямленным переменным оперативным током (рис.6.2). Трансформаторы СН присоединяются отпайкой к вводу главных трансформаторов. Такое включение обеспечивает возможность пуска ПС независимо от напряжения в сети 10кВ.
Рис. 6.2 Схема питания собственных нужд.
Таблица 6.10
Нагрузка собственных нужд подстанции.
Вид потребителя
Установленная мощность
Нагрузка
Единицы,
КВт*кол-во
Всего,
кВт
,
Охлаждение ТРДН25000/110
2,5х2
5
0,85
0,62
3,1
Подогрев выключателей и приводов
15,8х2
31,6
1
0
Подогрев шкафов КРУН
1х22
22
Подогрев приводов разъединителей
0,6х8
4,8
Отопление, освещение, вентиляция
60
ОПУ
Освещение ОРУ-110кВ
2
125,4
Расчётная нагрузка при Кс=0,8:
(6.38)
Принимаем два трансформатора ТМ-100 кВА. При отключении одного трансформатора, второй будет загружен на 125,44/100=1,254 , т.е. меньше чем на 40 %, что допустимо.
6.9. Выбор ограничителей перенапряжений.
Ограничители перенапряжений являются основным средством ограничения атмосферных перенапряжений.
Выбор ограничителей перенапряжения производится в соответствии с номинальным напряжением защищаемого оборудования, уровнем электрической прочности его изоляции и наибольшей возможной величиной напряжения частотой 50Гц между проводом и землёй в месте присоединения ограничителя перенапряжений к сети.
Выбираем ограничитель перенапряжения типа
ОПН-П1-110/88/10/2 УХЛ1
7. Конструктивное выполнение подстанции.
К конструкциям РУ предъявляются следующие основные требования:
1. Надёжность – применительно к конструкциям РУ надёжность достигается за счёт выполнения двух основных правил:
- соблюдение допустимых расстояний между токоведущими частями;
- взаимное расположение токоведущих частей различных цепей;
2. Безопасность – применительно к конструкциям РУ безопасность достигается за счёт исключения попадания обслуживающего персонала под напряжение:
- расположение токоведущих частей на высоте;
- сооружение ограждений.
3. Ремонтопригодность – вывод в ремонт какого либо присоединения или внутреннего элемента не должны по возможности, приводить к потере питания исправных.
4. Пожаробезопасность – сведение к минимуму вероятности возникновения пожара.
5. Возможность расширения – возможность подключение к схеме новых присоединений без существенных изменений существующей части.
6. Простота и надёжность – для снижения возможных ошибок эксплуатационного персонала.
7. Экономичность – минимальная стоимость при условии выполнения выше перечисленных требований.
Классификация РУ делится по типу исполнения и по типу конструкций.
По типу исполнения:
- открытые РУ (ОРУ) – оборудование, расположенное на открытом воздухе. Достоинство ОРУ – невысокая стоимость, хорошая обозреваемость, высокая ремонтопригодность. Недостатки – большая занимаемая площадь, нет защиты от воздействия внешней среды;
- закрытые РУ (ЗРУ) – оборудование, расположенное внутри здания. Достоинство ЗРУ – малая занимаемая площадь, защита от воздействия внешней среды, высокая безопасность. Недостатки – высокая стоимость, плохая обозримость, затруднённость проведения ремонтов.
По типу конструкций:
- сборные РУ – оборудование РУ собирается на месте сооружения;
- комплектные РУ (КРУ) – оборудование РУ собирается в блоки (ячейки) на заводе изготовителе, а на месте сооружения из блоков монтируется РУ. Достоинства КРУ – индустриальность изготовления и монтажа, резкое сокращение сроков монтажа (по сравнению со сборными РУ), высокая безопасность. Недостатки КРУ – относительно высокая стоимость и высокая металлоёмкость.
Выбор типа конструкции определяется условиями площади сооружения и климатическими условиями в районе сооружения.
РУ 110кВ выполнено открытыми (ОРУ) по типовой компановке с учётом возможности расширения (габоритах схемы) двойная система сборных шин с обходной). РУ 10кВ выполнено с помощью ячеек
КРУН К-47.
8. Релейная защита понижающего трансформатора.
Решение о выборе защиты понижающего трансформатора на подстанции принимается с учётом особенностей её электрической схемы, места в энергосистеме, токов и мощности оборудования, а также вид оперативного тока, применяемого на подстанции.
На трансформаторах номинальной мощностью более 6300кВА устанавливаются следующие виды защит:
- дифференциальная защита от повреждений в силовом трансформаторе и на его выводах;
- газовая защита от повреждений внутри бака;
- максимальная токовая защита (МТЗ) с блокировкой по минимальному напряжению, токовая защита обратной последовательности, дистанционная защита от коротких замыканий во внешней сети.
Вид установленной защиты зависит от мощности силового трансформатора и величины токов короткого замыкания;
- МТЗ от симметричной перегрузки.
8.1. Расчёт дифференциальной токовой защиты понижающего трансформатора.
Расчёт дифференциальной токовой защиты выполняется на реле серии ДЗТ-11, рекомендуемого для использования в схемах защиты силовых трансформаторов.
Выбор параметров защиты включает определение первичных токов для всех сторон защищаемого трансформатора. По этим токам определяются вторичные токи в плечах защиты, исходя из коэффициента схемы и коэффициента трансформации трансформаторов тока. Расчёт приведён в табл.8.1
Таблица 8.1
Значение первичных и вторичных токов в плечах защиты.
Наименование величины
Обозначение и метод определения
Числовое значение
110кВ
10кВ
Первичный ток на сторонах защищаемого трансформатора, А
Схема соединения трансформаторов тока
-
Δ
Ỵ
Коэффициент трансформации
300/5
1500/5
Первичный ток в плечах защиты, А
В качестве основного плеча защиты принимается сторона высшего номинального напряжения трансформатора – сторона110кВ.
Расчёт ТКЗ приведён в разделе 5 настоящей работы.
Предварительное определение первичного тока срабатывания защиты выполняется с учётом отстройки от броска тока на намагничивание при включении ненагруженного трансформатора под напряжение. Для двухобмоточных трансформаторов с расщеплённой обмоткой тормозную обмотку, как правило, рекомендуется присоединять на сумму токов трансформаторов тока, установленных в цепи каждой из расщепленных обмоток.
; (8.1)
где - первичный номинальный ток основной стороны
Максимальный первичный ток небаланса в дифференциальной обмотке, используемый для определения числа витков тормозной обмотки БНТ может быть найден по соотношению:
(8.2)
Определяем числа витков рабочей обмотки БНТ реле для основной стороны 110кВ и для стороны 10кВ, исходя из значения минимального тока срабатывания защиты. Расчёты сводятся в табл. 8.2
Таблица 8.2
Подсчёт числа витков обмотки БНТ реле для основной и не основной сторон трансформатора.
Ток срабатывания реле на основной стороне
Число витков обмотки БНТ реле для основной стороны:
- расчётное
- предварительно принятое
18
Число витков обмотки ННТ реле для не основной стороны:
предварительно принятое
14
Принимаются к использованию следующие числа витков: витков, что соответствует:
(8.3)
9957
В случае раздельной работы трансформаторов
15119 А
909А
В случае параллельной работы трансформаторов
Ток приведённый к высшему напряжению 110кВ
690 А
7559 А
Ток, протекающий через один трансформатор
Для определения расчётным является наибольшее значение
909 А
Расчёты сводятся в табл. 8.3
Таблица 8.3
Подсчёт числа витков тормозной обмотки.
Первичный расчётный ток небаланса с учётом составляющей при КЗ на шинах НН, А
249 А
909
Число витков тормозной обмотки БНТ реле
- принятое
= 7,79
1,5 х 249 х 14,2
909 х 0,75
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9