Так как применяется двухступенчатый подогрев сетевой воды, то для деаэрации подпиточной воды используется вакуумный деаэратор.
Расход сетевой воды:
,
где кДж/ч;
кДж/(кгoС). кг/ч
Величина подпитки теплосети:
т/ч.
Составим уравнение смешения для определения температуры на входе в ПСН:
где для вакуумных деаэраторов.
Определим расход пара в верхний и в нижний подогреватель:
где – определяем по давлению в подогревателе; .
т/ч;
где – определяем по давлению подогревателей;
Принимаем расход пара на турбину Gт=1. Тогда подвод свежего пара к стопорным клапанам ЦВД Go=Gт+Gпрупл=1,02·Gт. Паровая нагрузка парогенератора Gпе=Go+Gут=1,012·Go=1,032·Gт, где потеря от утечек через неплотности Gут=0,012·Go=0,01224·Gт. Расход питательной воды Gпв=Gпе=1,032·Gт. Расход добавочной воды Gдоб=Gут=0,01224Gт.
Из таблицы 2 находим:
h1=3026 кДж/кг h21оп=1180 кДж/кг
h2=2953 кДж/кг h22оп=1053 кДж/кг
h3=3329 кДж/кг h23оп=865 кДж/кг
hjопп = f (Pпод j, tн j+20) hдр j = f (Pпод j, tв j+1+10)
h1опп=2865 кДж/кг hдр1=1085 кДж/кг
h2опп=2858 кДж/кг hдр2=873 кДж/кг
h3опп=2832 кДж/кг hдр3=719 кДж/кг
Повышение энтальпии воды в питательных насосах:
кДж/кг.
Энтальпия воды перед ПВД 3 с учетом работы питательных насосов:
h13=h`д+Dhпн=687+35,9=722,9 кДж/кг.
Расход пара уплотнений, подаваемый на подогреватель:
Энтальпия пара уплотнений:
Тепловой баланс для ПВД 1:
Тепловой баланс для ПВД 2:
Тепловой баланс для ПВД 3:
Определяем нагрев воды в ОПП:
Уточняем энтальпии воды за подогревателями.
Составляем уточненные тепловые балансы.
Для ПВД 1:
Для ПВД 2:
Так как ПВД-3 включён по схеме Виален, то на этом этапе уравнение для ПВД-3 не меняется.
Необходимо уточнить .
кДж/кг, tпв=276 оС.
ПВД-8
ПВД-7
ПВД-6
0,0716
0,0704
0,0592
Составим уравнение материального баланса:
где Gпв=1,04Gт; Gвып=0,002Gок;
Тогда
1,04+0,002 Gок=0,2079Gт+Gд+Gок
Уравнение теплового баланса:
Отсюда Gок=0,8148 Gт; Gд=0,0192.
h4=3136 кДж/кг h24=641 кДж/кг hдр4=646 кДж/кг
h5=3036 кДж/кг h25=572 кДж/кг hдр5=580 кДж/кг
h6=2994 кДж/кг h26=531 кДж/кг hдр6=535 кДж/кг
h7=2847 кДж/кг h27=427 кДж/кг hдр7=417 кДж/кг
h’псв=535 кДж/кг
h’псн=417 кДж/кг
Составим систему уравнений из тепловых балансов ПНД 4-5-6-7, связанных дренажными насосами:
;
; ;
.
Рассчитаем конденсатор ОУ+СП, ОЭ как один смешивающий подогреватель.
Примем G8=0, Gоэ=0,002 Gт
Расход пара в конденсатор:
Тепловой баланс для ОУ+СП и ОЭ:
Оценим энтальпию h27.
Принимаем т/ч.
Отсюда кДж/кг, а оС, что меньше 60 оС, значит линия рециркуляции не работает, а следовательно ПНД 8 не работает.
Расход пара при теплофикационном режиме:
кг/с,
где – электрическая мощность на клеммах генератора; – электромеханический КПД турбогенератора; – соответственно расход пара отбор турбины и коэффициент недовыроботки для этого отбора; – приведенная относительная величина утечек пара через концевые уплотнения турбины:
где и – соответственно относительная величина утечки пара через концевое уплотнение и работа этого пара в турбине.
Расход пара на турбину:
Тогда:
т/ч
Мощность турбины:
Погрешность определения мощности составляет 3%.
Используемое топливо: основное – газ, резервное – мазут М-100.
Паропроизводительность Д0= 1000 т/ч
Давление острого пара Р0=25 МПа
Температура перегретого пара t0=545 0C
Состав газа по элементам:
Таблица 3.1
,ккал/м3
CH4,%
C2H6,%
C3H8, %
C4H10, %
C5H12, %
N2, %
CO2, %
кг/м3
8570
98,9
0,3
0,1
0
0,4
0,2
0,712
Состав мазута по элементам:
Таблица 3.2
,ккал/кг
Wр, %
Ар, %
,%
СР,%
HР,%
NР+ОР, %
9260
3,0
2,8
83,0
10,4
0,7
V0=0,0889×(CP+0,375×)+0,265×HP-0,0333×OP=
=0,0889×(83,0+0,375×2,8)+0,265×10,4-0,0333×0,5×0,7= 10,21 м3/кг
теоретический объём азота:
=0,79×V0+0,8×NP/100=0,79×10,2+0,8×0,5×0,7/100=8,1 м3/кг,
теоретический объём трёхатомных газов:
=1,866×=1,866×=1,57 м3/кг
теоретический объём водяных паров:
=0,111×HP+0,0124×WP+0,0161×V0=0,111×10,4+0,0124×3,0+0,0161×10,2=1,36 м3/кг
При избытке воздуха a>1 (принимаем a=1,03) объём водяных паров:
=+0,0161×(a-1)×V0=1,36+0,0161×(1,03-1)×10,2 = 1,364 м3/кг
объём дымовых газов:
Vг=+++(a-1)×V0=1,57+8,1+1,364+(1,03-1)×10,21= 11,34 м3/кг
Объёмные доли трёхатомных газов и водяных паров соответственно:
=/Vг =/Vг
Суммарная объёмная доля: rп=+.
Безразмерная концентрация золы:
mзл=, где аун=0,06
Gг=1-АР/100 + 1,306×a×V0, кг/кг
– масса дымовых газов.
Результаты расчётов по пункту 3.2. сведём в таблицу 3.3.
Таблица 3.3.
Величина
Размерн.
Газоходы
aт=1,03
aпп=1,06
aвэ=1,08
aрп=1,28
среднее знач.
a в газоходах
–
1,03
1,045
1,07
1,18
(a-1)×V0
м3/кг
0,306
0,459
0,714
1,836
1,364
1,367
1,371
1,39
Vг
11,34
11,496
11,755
12,896
0,138
0,136
0,133
0,122
0,12
0,119
0,116
0,106
rп
0,258
0,255
0,249
0,288
Gг
кг/кг
14,72
14,92
15,25
16,72
mзл
4,1×10-6
4,02×10-6
3,9×10-6
3,6×10-6
Составим общее уравнение теплового баланса:
=Q1+Q2+Q3+Q4+Q5+Q6
=+Qв.вн.+iтл,
где Qв.вн. = b'['- ] – тепло внесённое в котёл воздухом,
b' – отношение количества воздуха на входе в котлоагрегат к теоретическому необходимому,
', – энтальпии теоретически необходимого количества воздуха на входе в котлоагрегат и холодного воздуха, определяется соответственно по температуре на входе в воздухоподогреватель и холодного воздуха по I-t таблице [5].
b'=aт+Daт+DaВП=1,03-0,05+0,2=1,28
' =Ср×V0×tв=0,32×10,21×60=196 ккал/кг
= Ср×V0×tхв=0,32×10,21×30=98 ккал/кг
Qв.вн.=1,28×[196-98]= 115,6 ккал/кг
iтл – физическое тепло топлива.
iтл=Cтл×tтл
Cтл=0,415+0,0006×tтл=0,415+0,0006×120=0,487 ккал/(кг×0С)
iтл=0,487×120=58,44 ккал/кг,
тогда =9260+115,6+58,44= 9434 ккал/кг
q2=,
где tух=140 0С, Iух=637 ккал/кг, q4=0 (принято), aух=1,28,
тогда
q2== 5,42 %
потери тепла от химической неполноты сгорания принимаем q3=0,5 %, от механической неполноты сгорания q4=0 потери тепла в окружающую среду q5=0,4 %, потери тепла с физическим теплом шлама q6=0.
3.2.3.3. Определяем полезно используемое тепло:
q1=Q1/==100-q2-q3-q4-q5-q6=100-5,42-0,5-0-0,4-0=93,68 %
В=×100, кг/ч,
где
QКА=Дпе×(iпе-iпв)+Дпр×(is-iпв)=1000×(838,7-259)+12,6×(387-259)= =1312,8ккал/т,
В=×100 = 65775,9 кг/ч = 65,8 т/ч
Полученный расход топлива используем в дальнейших расчётах.
V0=0,0476×[å(m+n/4)×CmHn+0,5×(CO+H2)+1,5×H2S-O2]=
=0,0476×[(1+4/4)×98,9+(2+6/4)×0,3+(3+8/4)×0,1+(4+10/4)×0,1+0,5×(0+0) +1,5×(0+0)]= 9,52 м3/кг
=0,79×V0+0,01×N2=0,79×9,52+0,01×0,4= 7,525 м3/кг,
=0,01(åm×CmHn+CO2+CO+H2S)=0,01×(1×98,9+2×0,3+3×0,1+4×0,1 +0,2+0+0)= 1,004 м3/м3
=0,01×(å× CmHn+H2S+H2+0,124×dг+1,41×V0)=
=0,01×(2×98,9+3×0,3+4×0,1+5×0,1+0+0+0,124×10+1,61×9,52) = 2,16 м3/м3
При избытке воздуха a>1 (принимаем a=1,05):
объём водяных паров:
=+0,0161×(a-1)×V0=2,16+0,0161×(1,05-1)×9,52 = 2,168 м3/м3,
Vг=+++(a-1)×V0=1,004+7,525+2,16+(1,05-1)×9,52= 11,165 м3/м3,
Gг=1-АР/100 + 1,306×a×V0, кг/кг – масса дымовых газов.
Результаты расчётов по пункту 3.3. сведём в таблицу 3.4.
Таблица 3.4.
aт=1,05
aпп=1,08
aвэ=1,1
aрвп=1,3
1,05
1,065
1,095
1,2
м3/м3
0,476
0,6188
0,904
1,904
2,168
2,17
2,174
2,191
11,165
11,308
11,593
12,593
0,09
0,0888
0,0866
0,0797
0,194
0,192
0,187
0,174
0,284
0,2808
0,274
0,254
', – энтальпии теоретически необходимого количества воздуха на входе в котлоагрегат и холодного воздуха, определяется соответственно по температуре на входе в воздухоподогреватель и холодного воздуха.
b'=aт+Daт+DaВП=1,05+0,05+0,2=1,3
' =Ср×V0×tв=1,28×9,52×30= 365 кДж/м3
= Ср×V0×tхв=1,28×9,52×15= 183 кДж/м3= 43,71 ккал/м3
Qв.вн.=1,3×[365-183]= 236,6 кДж/м3 = 56,5 ккал/м3
iтл»0 ккал/м3 (для газа) – физическое тепло топлива.
тогда =8570+56,5 = 8626,5 ккал/м3
где tух=120 0С,
Iух=(×+×+×+(a-1)×V0×Cв)×tух=
=(1,004×1,708+7,525×1,302+1,39×1,5+1,904×1,304)×120=1929,62кДж/м3= =461 ккал/м3,
q4=0 (принято), aух=1,28 (см. п.4.2.2.),
q2== 4,69 %
Потери тепла от химической неполноты сгорания принимаем q3=0,5 %, от механической неполноты сгорания q4=0, потери тепла в окружающую среду q5=0,4 %, потери тепла с физическим теплом шлама q6=0.
q1===100-q2-q3-q4-q5-q6=100-4,69-0,5-0-0,4-0= 94,41 %
QКА=Дпе×(iпе-iпв)+Дпр×(is-iпв)=1000×(838,7-259)+12,6×(387-259)= =581312,8ккал/т,
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10