где
Q0=Qбр+QбрNa==93,986+489,69=583,68 м3/ч,
Для осветительных фильтров w=5-10м/ч, принимаем w=8м/ч.
Принимаем диаметр равным dcm =3,4м вычислим необходимую площадь фильтрования каждого фильтра:
Выбираем фильтры типа ФОВ-3,4-0,6 с h=1 м; fост=9.08 м2 /8/.
Далее определим необходимое число фильтров:
m0=F0/fост=73/9,08=9 фильтров
Расход воды на взрыхление, промывку и отмывку ОФ:
где fост-сечение осветлительного фильтра, м;
i – интенсивность взрыхления фильтра, загруженного антрацитом, 12л/с.м;
tотм-продолжительность отмывки, 10 мин;
n0-число промывок каждого фильтра в сутки (1-3), принимаем n0=2.
Производительность брутто:
Q0бр=Q0+q0=583,68+43,4=627,08 м3/ч.
Действительная скорость фильтрования:
w0m-1<w0доп=10 м/ч
Нет необходимости в установке резервного фильтра.
Для удобства компоновки ОФ установим три 3-х камерных фильтра ФОВ-2К-3.4-0.6 /8/.
Суммарная производительность осветлителей принимается равной 110% расчетного расхода осветленной воды, при этом устанавливается не менее двух осветлителей.
Ёмкость каждого осветлителя:
где Q0-полная производительность всей установки, м3/ч;
продолжительность пребывания воды в осветлителе 1-1,5ч, принимаем=1,5ч.
Выбираем осветлители типа ВТИ-400 (V=650 м3) /17/.
Необходимое количество реагентов при коагуляции и известковании:
Расход коагулянта FeSO4×7H2O в сутки:
где Эк - эквивалент безводного коагулянта ( FeSO4 - 75.16 )
Кк - доза коагулянта, мг-экв/кг ( Кfe=0.2 );
GКтехн=GK100/c=226,2.100/50=452,46 кг/сут
где с-процентное содержание коагулянта в техническом продукте, с=47-53%, принимаем с=50%.
Расход ПАА в сутки:
где dПАА - доза полиакриламида, равная 0.2-1.8 мг/кг, принимаем dПАА=1,5мг/кг
Расход извести Са(ОН)2 в сутки:
где 37.05 - эквивалент Ca(OH)2;
dи - доза извести, мг-экв/кг;
dи=Жкисх+Жmgисх+Кк+aизв=4.29+0.858+0.2+0.4=5.748
где aизв-избыток извести, aизв=0,3мгэкв/кг.
Результат анализа расчета схемы ВПУ явился выбор состава оборудования схемы (табл.5), расчет суммарного суточного расхода реагентов на регенерацию фильтров (табл.6), определение расхода ионитных материалов на загрузку фильтров(табл.7) и воды на собственные нужды (табл.8).
Таблица 5. Оборудование предочистки и ионообменной части ВПУ
Наименование
Тип
Кол-
во
Характеристика
Осветлитель
ВТИ-400и
2
Производительность-400м3/ч
Объем-650м3, диаметр-11м
Бак осветленной
воды
Объем-1000м3, диаметр-10,4м
Высота-12,9м
Осветлительный
фильтр
ФОВ-2К-3,4-0,6
5
Диаметр-3400мм,
Высота загрузки-900.2мм
Бак промывочной
1
Объем-630м3, диаметр-9,1м;
Высота-11,2м
Бак сброса
промывочной воды
Н1 - фильтр
ФИПа-I-1,5-0,6
3
Ионит-КУ-2, диаметр-1,5м,
Высота загрузки-2м,
Регенерация-Н2SO4
A1 - фильтр
Ионит-АВ-17-8,диаметр-1,5м;
Регенерация-NaOH
Декарбанизатор
Производительность-300м3/ч,
Диаметр-2,52
Бак декарбонизированной
Объем-400м; диаметр-7,9м;
Высота-9,8м
Н2 - фильтр
ФИПа-II-1,0-0,6
Ионит-КУ-2, диаметр-1,0м,
Высота загрузки-1,5м,
A2 - фильтр
ФИПа-II-1,5-0,6
ФСД
ФИСВДР-2,0-0,6
Ионит- АВ-17-8 и КУ-2,
Диаметр-2,0м; высота-1,95м;
Регенерация- NaOH и Н2SO4
Бак обессоленной воды
Объем-100м3, диаметр-4,9м;
Высота-6,1м
Na - фильтр
ФИПа-I-3,0-0,6
Ионит-КУ-2, диаметр-3,0м;
Высота загрузки-2,5м;
Регенерация-NaCl
Бак умягченной воды
Объем-250м; диаметр-7м;
Высота-8,1м
Таблица 6. Расход реагентов на ионные фильтры в сутки
Реагент,кг
Н1
А1
Н2
А2
Na
H2SO4
548,38
-
74,61
65,28
NaOH
199,38
263,48
52,22
NaCl
1271,76
Общий суточный расход реагентов на регенерацию:
H2SO4 – 688,27 кг;
NaOH – 515,1 кг;
NaCl – 1271,76 кг;
Таблица 7. Расход ионита на ВПУ
Ионит, м3
КУ-2
10,6
3,5
9,18
52,99
АВ-17-8
7,95
Суммарная загрузка ионита:
КУ-2 – 76,27м3;
АВ-17-8 - 27,73м3.
Таблица 8. Собственные нужды ВПУ
Предочистка
48,2 м3/ч
Система умягчения
9,69 м3/ч
Система обессоливания
8,99 м3/ч
Установки по химической обработке воды размещаются в отдельном стоящем здании. Компоновка фильтров - блочная. При такой компоновке в состав каждого блока (цепочки) входит по одному фильтру соответствующей ступени ионирования, в следствие чего цепочка осуществляет полный цикл очистки воды. Количество цепочек определяется результатом расчёта ВПУ с учётом одной ремонтной и одной находящейся на регенерации ступеней, то есть 5 цепочек. Преимуществами данной компоновки является: повышенная надёжность системы ВПУ в результате независимости каждой цепочки, меньший расход реагентов на регенерацию (за счёт последовательной совместной регенерации однотипных фильтров первой и второй ступеней). К недостаткам этой компоновки относятся: большой перерасход металла за счёт увеличения общего числа оборудования и ионитов, более сложный алгоритм управления работой фильтров, плохая адоптация к изменяющимся условиям.
Предусматривается возможность дальнейшего расширения ВПУ. Вне здания устанавливаются осветлители, промежуточные баки, декарбонизаторы. Эти установки имеют тепловую изоляцию, баки имеют дополнительный подогрев обратной водой тепловой сети. Вся запорная и регулирующая арматура этих установок размещается внутри здания.
В помещении ВПУ предусмотрена комната площадью 63 м3 для ремонтных работ и восстановления химических покрытий.
Для хранения химреагентов и материалов на ТЭЦ имеется склад, оборудованный устройствами для механизированной выгрузки, транспортировки и приготовления реагентов и их растворов. Предусматриваются специальные помещения и ёмкости для хранения реагентов. Для хранения кислот и щелочей установлено по два бака для каждого реагента, для остальных - по одному. Склад обеспечивает запас химреагентов на 15 суток.
Замазученный конденсат очищается на станции по схеме с нефтеловушкой и фильтрами. Исходная вода поступает в баки-приёмники, где происходит частичное отстаивание воды. Далее вода поступает в нефтеловушку, которая обеспечивает 40%-ое удаление нефтепродуктов за счет скребкового механизма, сборных труб и эжектора для удаления осадка. Далее вода поступает на флотационную установку. Предварительно в воду добавляется коагулянт. Флотационная установка обеспечивает 30%-ое удаление нефтепродуктов. После промежуточного бака и насосов вода фильтруется на механических фильтрах с засыпкой антрацита и активированного угля.
Для обессоливания турбинного конденсата блока Т-250-240 применяется блочная обессоливающая установка, состоящая из трех сульфоугольных механических фильтров и трех фильтров смешанного действия (ФСД). За ФСД установлена ловушка для улавливания выноса ионитов из-за возможного дефекта дренажных устройств. БОУ размещена в машинном зале на нулевой отметке с компоновкой фильтров в два яруса /7/.
Сточные воды проектируемой ТЭЦ включают: охлаждающую воду конденсаторов паровых турбин, обмывочные воды конвективных поверхностей нагрева паровых и водогрейных котлов, воды загрязненные нефтепродуктами и маслами, воды зашламленные от периодических продувок, отходы регенерационных отмывок фильтров ВПУ, растворы консервантов и кислотных промывок.
Сбросные воды ВПУ и БОУ очищаются по схеме нейтрализации Ca(OH)2 с применением двух баков-нейтрализаторов. Внутренняя поверхность баков покрыта антикоррозионным материалом. Каждый бак рассчитан на приём не менее суточного количества регенерационных вод.
Количество сточных вод на ТЭЦ уменьшается в результате применения на ВПУ оборудования противоточной фильтрации. Это позволяет уменьшить расход химреагентов на регенерацию на 30-40%. А также применяется парная регенерация фильтров 1 и 2 ступеней. Промывочные сбросные воды ТЭЦ обезвреживаются по схеме нейтрализации в баках-нейтрализаторах /8/.
Водно-химический режим тепловых электрических станций должен обеспечивать работу теплосилового оборудования без повреждений и снижения экономичности, вызванных образованием: накипи, отложений на поверхностях нагрева; шлама в котлах, тракте питательной воды и в тепловых сетях; коррозии внутренних поверхностей теплоэнергетического оборудования и тепловых сетей; отложений в проточной части паровых турбин; отложений на поверхностях трубок конденсаторов турбин.
С целью обеспечения рационального водно-химического режима на тепловых электростанциях осуществляется нормирование качества пара и воды.
К основным мероприятиям по поддержанию нормируемых показателей водно-химического режима энергоблоков ТЭС относятся: предпусковые промывки оборудования; фосфатирование котловой воды; проведение эксплуатационных промывок оборудования; консервация оборудования во время простев; герметизация баков питательной воды и её составляющих с целью предотвращения попадания кислорода в пароводяной цикл; обессоливание и обескремнивание добавочной воды; удаление свободной угольной кислоты из добавочной химически обработанной воды; обезжелезивание и обессоливание различных конденсатов; деаэрация турбинного конденсата и питательной воды; оснащение конденсаторов специальными дегазирующими устройствами с целью удаления кислорода из конденсата, обеспечение достаточной герметичности конденсаторов турбин со стороны охлаждающей воды и воздуха; постоянный вывод неконденсирующихся газов из паровых камер теплообменников; тщательное уплотнение конденсационных насосов, арматуры и фланцевых соединений трубопроводов, находящихся под разряжением; антикоррозийное покрытие оборудования и применение коррозионно-стойких материалов; введение в паровой цикл корректирующих химических реагентов, соответствующих данному водно-химическому режиму; автоматическая дозировка добавок, корректирующих водный режим.
Для прямоточного котла ТГМП-314А выбираем нейтрально-окислительный режим, основанный на существенном повышении окислительного потенциала среды дозированием в питательную воду кислорода или перекиси водорода и поддержанием рН в пределах 7,0±0,5.
Нормы качества пара прямоточных котлов /8/ установленных на ТЭЦ приведены в таблице 9.
Таблица 9. Нормы качества пара прямоточных котлов
Нормируемый показатель
Численное значение
Содержание натрия (в пересчёте на Na), мкг/кг, не более
Кремниевая кислота (в пересчёте на SiO2), мкг/кг
15
Удельная электрическая проводимость Н-катионированной пробы, мк См/см, не более
0,3
Значение pH, не менее
7,5
Таблица 10. Нормы качества питательной воды прямоточных котлов
7,0
Общая жесткость мг-экв/кг, не более
0,2
Содержание железа в пересчете на Fe мкг/кг, не более
10
Содержание меди перед Д мкг/кг, не более
Вещества, экстрагируемые эфиром, мкг/кг, не более
0,1
Качество воды для подпитки тепловых сетей и сетевой воды нормируется по следующим показателям: растворенный кислород допустим в колличестве не более 20 мкг/кг для сетевой воды и не более 50 мкг/кг для подпиточной воды; содержания веществ, экстрагируемых эфиром не более 1 мг/кг, взвешанных веществ не более 5 мг/кг, соединения железа-0,5 мг/кг.
По ПТЭ для пусковых режимов блоков СКП разрешается некоторое ухудшение качества пара. Неизбежность ухудшения качества пара в пусковых режимах связана со стояночным режимом, предшествующим пуску блока.
К основному электрическому оборудованию электростанций относятся генераторы и трансформаторы. Количество агрегатов и их параметры выбираются в зависимости от типа, мощности и схемы станции, мощности энергосистемы и других условий.
Схемы выдачи электроэнергии зависят от типа и мощности станции, состава оборудования и распределения нагрузки между распредустройствами разного напряжения. В исходном задании связь с энергосистемой осуществляется по линиям высокого напряжения 330 кВ и 110 кВ.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10