Рефераты. Перспектива збільшення економічності Зуєвської теплової електростанції за допомогою вибору оптимального режиму роботи енергоблоку






Витрата охолодженої води Gв може бути визначений або за допомогою витратоміра, або по характеристиці циркуляційного насоса, або по витраті електроенергії й на привод насоса (при заданому тиску нагнітання Рцн, тиску на всасі в насос Рцв і ККД насоса ηцн).

Однак на практиці витрата охолодженої води для потужних енергоблоків частіше визначають із теплового балансу конденсатора:


,кг/год (4.6)


де Dк- витрата пари в конденсатор, кг/год;

 - відповідно, ентальпії пари й конденсату, кДж/кг;

Св – теплоємність води, кДж/(кг. 0С);

∆tв – нагрівання води в конденсаторі, 0С.

Чистота поверхні трубок конденсатора визначається також аналітично з використанням значень: коефіцієнта теплопередач пари, конденсату, температурного напору, температур і витрати охолодженої води або методами, пропонованими нижче.[13]

Найбільш простим методом визначення коефіцієнта теплопередачі К у конденсаторі є розрахунок його по формулі:


, Вт/0C∙ м2 (4.7)


де Fк – поверхня охолодження конденсатори, м2;

δt – температурний напір у конденсаторі, ос.

Експертна оцінка виробляється за результатами моніторингу, у тих випадках, коли джерело й причини відмови не очевидні. У цих випадках експлуатаційний персонал або ЕОМ звертаються до банку даних по відмовах, які уведені на згадку ЕОМ, або до експерта. Експертом повинен бути висококласний фахівець із числа працівників ТЕС.

У банк даних вносять енергетичні характеристики конденсаторів, насосів, ежекторів і т.д. Крім цього вносять характеристики відмов в елементах НПК (їхньої причини, джерела, періодичність відмов).

До висновку ставиться - рекомендації з оптимізації режиму НПК.

У завдання оптимізації НПК входить:

- вибір оптимального варіанта з можливих (по економічності, надійності й екологічності);

- приведення НПК в оптимальний стан.

Розробка алгоритму системи містила в собі:

- вибір методу контролю НПК;

- вибір оптимальної кількості параметрів, що характеризують роботу й стан НПК;

- нагромадження бази даних по відмовах у роботі НПК і енергоблоці;

- нагромадження бази даних по способах локалізації відмов.

Послідовність операцій, вироблених системою, зображена на мал.5.4.

Основними етапами роботи системи є:

1. Контроль поточних значень параметрів (Ркi, Хki і т.д.).

2. Порівняння параметрів (Рki=Рко) і видача сигналу.

2.1. При Рki=Рко продовжувати виконання заданого режиму експлуатації.

2.2. При Ркi=Рко й необхідності переходу на новий режим роботи зробити вибір оптимального режиму роботи з урахуванням зовнішніх умов Nэi, Qmi, tнвi і т.д.

2.3. При Рki¹Рко:

–                   повторно перевірити коректність виміру параметра прямим і непрямим виміром Pki=f(tki,t2вi і т.д.);

–                   перевірити DPki/Dt >0.

2.3. 1. У випадку DPki/Dt = 0 (відмова не розвивається).

Продовжити пошук джерела відмови.

2.3. 2. У випадку, якщо: джерело відмови не знайдений, але DPki/Dt = 0 необхідно вибрати оптимальний режим роботи НПК, енергоблоку, станції.

2.3. 3. Джерело відмови не знайдений, але DPki/Dt > 0 необхідно відключати енергоблок.

2.4. При Рki¹Рко й DPki/Dt > 0 - відключити енергоблок (або ввести резервний елемент НПК).

2.5. Після усунення, локалізації джерела відмови:


4.6.4 Алгоритм визначення ступеня забруднення трубок конденсатора

Як уже раніше згадувалося, забруднення з водяної сторони є найбільш частою причиною погіршення вакууму. При цьому погіршення вакууму відбувається як внаслідок збільшення термічного опору за рахунок забруднення трубок, так і за рахунок деякого скорочення витрати води через конденсатор, внаслідок підвищення гідравлічного опору конденсатора.

Найважливішим експлуатаційним завданням є запобігання забруднення конденсаторів парових турбін, а у випадку його виникнення - вишукування способів очищення конденсаторів, з мінімальними витратами праці й по можливості без обмеження навантаження. Інтенсивність забруднення конденсатора залежить в основному від якості охолодження води, типу водопостачання, пори року й умов експлуатації системи циркуляції водопостачання.

Тому в цей час необхідно приділяти особлива увага, товщині шаруючи відкладень .

У випадку неможливості експериментального визначення , що характерно для режимів роботи конденсаторів при навантаженні енергоблоку, товщину шаруючи можна визначити аналітично, за методикою розробленій авторами. [31]

Розглянемо приклад розрахунку товщини шаруючи відкладень.

Кількість пари вступника в конденсатор:  ;

Витрата охолодної води: ;

Швидкість охолодної води: ;

Поверхня охолодження конденсатора : ;

Діаметр трубок: ;

Матеріал трубок: МНЖ 5-1;

Температура охолодної води на вході в конденсатор : ;

Температура охолодної води на виході з конденсатора: ;

Кількість теплоти віддачі конденсатора: ;

Визначення товщини шаруючи відкладень у трубках конденсатора

Для визначення товщини шаруючи відкладення авторами розроблений метод, що дозволяє визначити середнє значення товщини відкладення в теплообміннику або його одному з ходів



при , але з появою відкладень (на внутрішніх стінках трубок)


 (4.9)


З рівняння 4.5 і 4.6


 


 (4.10)


Для будь-якого стану трубок при  > 0

З рівняння 4.10


- термічний опір шаруючи ;

одержуємо


 (4.11)

 (4.12)

 (4.13)

 (4.14)


 (4.15)


де - коефіцієнт теплопровідності відкладення відомий з багаторічного досвіду експлуатації або на підставі хімічного аналізу.

- розрахунковий коефіцієнт теплопередачі.

Для конденсаторів парових турбін “ДО” можна визначити по [8]

= коефіцієнт теплопередачі визначається по формулі:


 (4.16)


де  - термічний опір шаруючи;

Визначаємо товщину шаруючи накипу по формулі (4.15)

Визначення товщини шаруючи відкладень через нормативний коефіцієнт теплового потоку

Визначаємо товщину шаруючи відкладень іншим способом:


,мм (4.17)


Використовувані формули для розрахунку. Визначаємо нормативний коефіцієнт теплового потоку: З теплового балансу конденсатора маємо:


 (4.18)


, кДж;/c/0C (4.19)

де Qk=Dk·, кДж/с;

= hk – hk/, кДж/кг;


 — температурний напір у конденсаторі недогрів води до температури насичення конденсату при Pk.[8]


, (4.20)

 (4.21)

 (4.22)

 (4.23)

де

 (4.24)


 — нагрівання охолодженої води в конденсаторі .Визначаємо


 (4.25)

 (4.26)

k0Rз+1= (4.27)

(k0Rз+1) =  (4.28)

 (4.29)

Визначаємо  - товщину шаруючи відкладень по (4.29) Як видно з розрахунків обидва способи рішення визначення  дали однаковий результат. Визначення залежності коефіцієнта теплопередачі від термічного опору


Використовувані формули для розрахунку:


; (4.30)

; (4.31)


     — товщина шаруючи відкладень змінюється в межах від 0,5·10-3м до 2,5·10-3м. Знаходимо розрахунковим шляхом зміни ki — коефіцієнта теплопередачі при повній зміні товщини шару відкладень отримуємо значення і заноситься в таблицю 4.1


Таблиця 4.1: Залежність

Товщина слоя накипу, м

Коефіцієнт теплопровідності

Термічний опір

Коефіцієнт теплопередачі

,

0,5·10-3

1

0,0005

1178,31

1,0·10-3

1

0,001

740,65

1,5·10-3

1

0,0015

541,08

2,0·10-3

1

0,002

425,6

2,5·10-3

1

0,0025

351,17



За допомогою ЕОМ аналогічно були знайдені значення по другому способі визначення  й потім була, побудована графічна залежність, що показана на малюнку 4.5.



Визначення залежності тиску в конденсаторі від товщини шаруючи відкладень і температури охолодженої води

Використовувані для розрахунків формули:


,  (4.32) — коефіцієнт теплопередачі для i-го режиму

, (4.33) - термічний опір для i-го режиму

,  (4.34) — недогрів води до температури насичення на виході з конденсатора.

 по літ [27]


Отримані дані заносимо в таблицю 4.2

Товщина слоя накипу,

Терм-яке сопрот-і ,

Вт/м2ДО

Коефіцієнт теплопередачі, ki,

Недогрів води до температури насичення,

Температ. конденса-

ції пари

Кінцевий тиск pk, МПа

0,5·10-3

0,0005

1178,31

17

47,7

0,0106

1,0·10-3

0,001

740,65

27

57,7

0,0175

1,5·10-3

0,0015

541,08

37

67,7

0,0276

2,0·10-3

0,002

425,6

47

77,7

0,0419


За допомогою ЕОМ аналогічно були знайдені значення по другому способі визначення  й потім була побудована графічна залежність, що показана на малюнку 4.6.

Малюнок 4.6 Залежність тиску в конденсаторі від товщини відкладень  та температури води, що охолоджує

 
 




Визначення залежності термічного опору від товщини шаруючи відкладень у трубках конденсатора


Використовувані формули:

 (1) ; — термічний опір шаруючи відкладення;

 = 1, 2, 3 Вт/м2 0С — коефіцієнт теплопровідності. Після добутку розрахунків, будуємо графічну залежність на ЕОМ, що показана на малюнку

 


Малюнок 4.7 Залежність термічного опору від товщини шаруючи відкладень  у трубках конденсатора при


Побудова номограми для визначення товщини слоєвих відкладення в трубках конденсатора.

Після зроблених розрахунків і побудованих графічних залежностей, наведених на малюнках 1, 2, 3 будуємо номограму для визначення товщини шаруючи відкладення в трубках конденсатора на ЕОМ, що наведена на малюнку 4.8.


мал.4.8 Номограма для визначення товщини шаруючи відкладення в трубках конденсатора залежно від термічного опору , кінцевого тиску , температури охолодженої води


Висновки про зроблені дослідження

У результаті проведення дослідження визначення товщини шаруючи накипу (відкладення)  можна зробити наступний висновок. Обидва способи розрахунку дали однаковий результат, що підтверджується збігом ліній графічних залежностей на малюнках.

У висновку необхідно підкреслити, що діагностування енергоустаткування є одним з найбільш діючих способів підвищення економічності, надійності, довговічності, екологічності, соціально-економічної ефективності ТЕС і АЕС в умовах тривалої експлуатації.

Практична цінність проведеного дослідження

Даний спосіб дослідження визначення товщини шаруючи відкладення в трубках конденсатора був використаний і знайшов широке застосування на діючих блоках 300Мвт Змієвської та Зуєвської ТЕС і блоках 1000 МВт Запорізької АЕС, і показав свою практичну ефективність

4.7 Вплив надійності теплоенергетичних систем ТЕС на загально станційні показники надійності, економічності й екологічності

Надійність - це властивість об'єкта виконувати задані функції, зберігаючи свої експлуатаційні показники продуктивності, економічності, рентабельності й інші в заданих межах в теченії необхідного проміжку часу або необхідного наробітку. Для стаціонарних теплоенергетичних установок, що представляють собою великі малосерійні ремонтовані вироби з більшим терміном служби, поняття надійності можна інтерпретувати, як властивість відпускати не збережену продукцію (енергію) по строго заданому режимі, при цьому зберігаючи експлуатаційні показники в заданих межах протягом необхідного тривалого наробітку [1].

Як відомо, до числа основних властивостей теплоенергетичних установок, їхніх агрегатів і елементів устаткування можна віднести наступні: безвідмовність, довговічність, справність, несправність, працездатність, непрацездатність, граничний стан.

Для характеристики надійності роботи енергетичного (ТЕС і АЕС) об'єкта, як правило використають наступні поняття:

ушкодження - подія, що полягає в порушенні справності системи її підсистем і елементів, внаслідок впливу зовнішніх впливів, що перевищують рівні, установлені в нормативно-технічній документації на об'єкті;

відмова - подія, що полягає в порушенні працездатності енергоблоку, внаслідок несправності підсистеми (котельні або турбінної установок), елементів ( конденсатор, насоси, підігрівники й т.д.).

Відмови можуть бути повні й часткові. Після виникнення повної відмови підсистеми або елемента, енергоблок відключається. Після виникнення часткової відмови енергоблок може залишатися в роботі, але з меншою ефективністю.

Надійність теплоенергетичної установки й вхідних у неї елементів у принципі можна визначити безліччю кількісних показників, у тому числі коефіцієнтом готовності Кг. Коефіцієнт готовності - це імовірність, того що енергоблок або його елементи виявляться працездатними, тобто готовими нести проектне навантаження в довільний момент часу, крім періодів його планових зупинок

При порядку обслуговування, що передбачає негайний початок відновлення об'єкта, що відмовив, для визначення коефіцієнта готовності може бути застосована формулі:


Кг = , (4.35)


де 0 – наробіток на відмову (середнє число годин безвідмовної роботи) год;

в – середній час відновлення працездатності, у результаті повного Nэ =0, або часткового відмов, N>0, ч.

Використаний у практиці аналізу надійності енергоустаткування коефіцієнт готовності Кг – ураховує тільки повні відмови й не відбиває часткових відмов.

Як показує досвід багаторічної експлуатації найбільш характерними, є часткові відмови

Для визначення величини часткової відмови, що приводить до недовиробітку електроенергії можна використати, коефіцієнт часткової відмови Кч [1]

Кч=  , (4.36)

де:

Э – річна не довідпуска електроенергії, через часткові відмови, кВт год;

Эо - плановий річний виробіток електроенергії, кВт год;

Nэч – не довидача потужності внаслідок відмови, кВт;

- тривалість відмови, година;

Nэо – проектна потужність, кВт;

 - проектне число годин роботи, година.


Приклад 1:

Для енергоблоків 300 МВт

Nэо = 300*103 , кВт,

 = 5*103 година,

Nэч = 50*103 кВт,

 = 1*103 година

Кч =0,033, Кг = 0,83


Коефіцієнт часткової відмови, що приводить тільки до погіршення техніко - економічних показників ТЕУ (теплоенергетичних установок), може бути визначений по формулі (4.43)


 ,     (4.37)


де:

∆B - перевитрата палива, внаслідок відмови, кг;

В0 – повну планову витрату, кг;

 - питома витрата палива при частковій відмові, кг/кВт год;

 - планова питома витрата, кг/кВт год;

 - тривалість відмови й проектне число годин роботи в році, відповідно, година;

 - не довидача потужності внаслідок відмови й проектна потужність, кВт.

Приклад 2:

Визначити величину часткової відмови КеЧ і перевитрата палива , для наступних параметрів: =0,400г/кВт год; =0,30 кг/кВт год, Nэч, Nэо, ,  - див. приклад1


кг = 4.5 т


Глибина часткової відмови визначається не тільки часток зниження потужності установки  через відмову якого-небудь елемента, але й режимом навантаження енергоблоку за період усунення відмови. У випадку постійного навантаження значення не довідпустки енергії визначається з вираження:


,      (4.38)


Якщо ж заданий змінний графік навантаження N(t), то його необхідно апроксимувати східчастою функцією, а значення  визначається як сумарне:


 (4.39)


де  - потужність, що недодає на j-м прямолінійній ділянці апроксимованого ступінчастого графіка [кВт]; - час, протягом якого навантаження на j-м ділянці прийнята постійної, тобто Nj=const. За час =(Тч- Т) триває відновлення елемента, що викликали часткову відмову, але комплекс повністю забезпечує заданий графік навантаження й недовиробіток відсутня.

В відповідності зі сказаним показники надійності й витрати повинні визначаться з обліком повних і часткових відмов комплексу.

Як було сказано вище, відмови впливають на техніко - економічні показники енергоблоку, які залежать від ККД.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.