Рефераты. Синхронные машины. Машины постоянного тока






Учет падения напряжения в щеточном контакте.

При построении кривых изменения тока (рис. 2.33, а) не учитывалось падение напряжения в щеточном контакте. В действительности при быстром увеличении плотности тока под сбегающим краем щетки сопротивление щеточного контакта резко возрастает, что ведет к уменьшению остаточного тока или полному его устранению, даже в том случае, когда коммутация отличается от идеальной. Типичные кривые изменения тока в коммутируемой секции с учетом влияния сопротивления щеточного контакта приведены на рис. 2.33, б. При незначительном расстройстве коммутации замедление коммутации (кривая 2) или ее ускорение (кривая 4) не приводят к разрыву сбегающим краем щетки остаточного тока. Только значительное замедление (кривая 3) или значительное ускорение (кривая 5) коммутации приводят к возникновению опасного искрения.

При замедленной коммутации уменьшение остаточного тока происходит под действием разности падений напряжений u1 и u2 (см. рис. 2.30) под сбегающим и набегающим краями щетки:


.                                     (2.39)


При ускоренной коммутации на завершающем этапе, когда ток изменяет свое направление, в уравнение (2.39) входит сумма падений напряжения


.                                                    (2.39а)


При этом к концу процесса коммутации резко уменьшается ток i1, т.е. коммутируемая секция заканчивает коммутацию с так называемой ступенью малого тока (рис. 2.33, в), при которой допустима большая разница между ер и ек. Поскольку в эксплуатации появление погрешности коммутации как в одну, как и в другую сторону (т.е. ускоренная и замедленная коммутация) равновероятно, при расчете и наладке машины предпочитают иметь слегка ускоренную коммутацию. Для того чтобы усилить благоприятные влияния падений напряжений u1 + u2 на процесс коммутации, в мощных машинах постоянного тока с затрудненной коммутацией применяют щетки с большим переходным сопротивлением, несмотря на то, что это увеличивает потери мощности в переходном контакте.

Закономерности коммутации, рассмотренные на простейшем примере, в основном сохраняются и для более сложных случаев, когда щетка перекрывает несколько коллекторных пластин и в пазу находится несколько секций. Однако имеются и некоторые отличия от простейшего случая.

Общий случай коммутации при ширине щетки, большей коллекторного деления и нескольких проводниках, лежащих в пазу. В общем случае, когда щетка 1 перекрывает несколько коллекторных пластин (рис. 2.34, а), изменение тока происходит одновременно в нескольких секциях 2, лежащих в одном или нескольких пазах. На рис. 2.34, б изображена диаграмма коммутации секций одного паза для обмотки, показанной на рис. 2.34, а. Прямоугольники 3, 4, 5 и 6 показывают распределение во времени индуктивностей Lc секций, которые приняты равными их взаимоиндуктивностям Мс. Ширина каждого прямоугольника равна периоду коммутации


,                                            (2.40)


где γ = bщ/bк – коэффициент щеточного перекрытия (число коллекторных пластин, перекрываемых щеткой); bк = πDк/K-коллекторное деление–расстояние между серединами соседних коллекторных пластин.

Изменение токов i1, i2, i3 и i4 в рассматриваемых секциях происходит со сдвигом во времени


.                                                (2.41)



Рис. 2.34 – Коммутация при перекрытии щеткой нескольких коллекторных пластин (а) и диаграмма коммутации секции одного паза (б)


Время коммутации всех ип секций, лежащих в каждом слое паза, при диаметральном шаге обмотки якоря


.               (2.42)


Коммутация секций происходит в зоне коммутации, т.е. по дуге окружности якоря, в пределах которой перемещаются стороны секции, лежащие в пазах, во время коммутации. Ширину этой зоны bз.к (рис. 2.35, а) можно получить, если умножить время Тп на окружную скорость якоря va:


.                                 (2.43)


Ее можно также выразить через ширину щетки и коллекторное деление:


.                                    (2.43а)



Из рис. 2.34, б следует, что в рассматриваемом случае одновременно может происходить коммутация секций двух пазов: когда начинается коммутация секций любого n-го паза, продолжается коммутация секций предшествующего (п-1) – го паза; заканчивается же коммутация секций n-го паза, когда уже замкнуты накоротко некоторые секции (п + 1) – го паза. Таким образом, при исследовании процесса изменения тока в любой коммутируемой секции нужно учитывать индуктивное влияние секций, расположенных в том же и в соседних пазах. Для каждой из коммутируемых секций можно написать уравнение


,                                     (2.44)


где ек – коммутирующая э. д. с, создаваемая внешним полем (э.д.с. вращения); – Lcdi/dt-э.д.с. самоиндукции, возникающая при изменении тока в секции (индуктируемая потоком рассеяния ФL, рис. 2.35, б); –∑Mкdiк/dt-э.д.с. взаимоиндукции, возникающие в рассматриваемой секции в результате влияния других коммутируемых секций (индуктируемые потоками взаимоиндукции Ф'м и Ф"м рис. 2.35, б); Мк – взаимоиндуктивность рассматриваемой секции с другой секцией, коммутируемой одновременно; iк–ток в секциях, коммутируемых одновременно; ∑ir – сумма падений напряжений в сопротивлениях коммутируемой секции.

Аналитическое решение уравнения (2.44) невозможно, так как входящие в него индуктивности и сопротивления являются нелинейными, а сопротивления r зависят, кроме того, от характера коммутации.

Рассмотрим процесс коммутации в общем виде и определим среднюю скорость изменения тока во всех секциях якоря. При этом воспользуемся следующими соображениями. За время, соответствующее повороту якоря на одно полюсное деление (рис. 2.35, а)


,


происходит изменение направления тока во всех секциях S = N/(2ωc) обмотки якоря, т.е. приращение тока в секциях


.


Следовательно, средняя скорость изменения тока во всех секциях обмотки якоря


.                                (2.45)


Так как изменение тока в секциях происходит только в период коммутации, выражение (2.45) определяет среднюю скорость изменения тока во всех коммутируемых секциях машины. Однако при анализе коммутации обычно рассматривают секции, находящиеся в одной зоне коммутации bз.к, т.е. коммутируемые одной щеткой.

При этом условии


.                                     (2.45а)


Если принять скорость изменения тока в зоне коммутации постоянной, то постоянным будет и и полный ток, проходящий во всех секциях, которые расположены в этой зоне, вследствие чего поток взаимоиндукции Ф'м + Ф"м, замыкающийся через главные и добавочные полюсы (рис. 2.35, б), будет постоянным. При этом условии взаимоиндукция соседних пазов проявляется только при скорости изменения тока в коммутируемых секциях, отличной от средней. Индуктивность же, обусловленная потоками рассеяния ФL, сказывается при любой скорости изменения тока.


Рис. 2.35 – Положение коммутационной зоны (а) и магнитные потоки, создаваемые в ней коммутируемыми секциями (б)


Наличие сравнительно больших потоков взаимоиндукции Ф'м и Ф"м, обусловливает постоянство средней скорости изменения полного тока в зоне коммутации, так как при любом отклонении от этого закона в коммутируемых секциях индуктируется большая э.д.с. взаимоиндукции


,


стремящаяся ликвидировать указанное отклонение. Это теоретическое положение было впервые выдвинуто Л. Дрейфусом и в дальнейшем подтверждено подробными экспериментами Н.В. Волошина и В.Н. Безрученко.

В простейшем случае одновременной коммутации нескольких секций, каждая из которых занимает отдельный паз, для любой коммутируемой секции можно написать уравнение


,                             (2.46)


где Lc–индуктивность, обусловленная потоком рассеяния ФL секции; Мк – взаимоиндуктивность, обусловленная суммарным потоком взаимоиндукции Ф'м + Ф"м или с учетом (2.45а)


.                           (2.46а)


Суммируя уравнения для всех коммутируемых секций и пренебрегая разностью падений напряжений под щеткой, получим


,                       (2.47)


где ∑ек = ек1 + ек2 + ек3+ · · · екn, n – одно из целых чисел, ближайших к числу γ коллекторных пластин, перекрываемых щеткой.

Примем ек1 = ек2 = ек3= · · · = екn = ек.ср и усредним число коротко-замкнутых секций. Тогда, полагая п = γ, запишем:


.                       (2.47а)


Поскольку проводимость для суммарного потока взаимоиндукции Ф'м + Ф"м во много раз больше проводимости для потока рассеяния ФL, т.е. Mк>>Lс, и практически, как показали экспериментальные исследования, diк/dt = Avа/ωс = const, получим


,                                       (2.47б)


Откуда


.                                                 (2.48)


Сравнивая выражения (2.48) и (2.32), можно установить, что перекрытие щеткой нескольких коллекторных пластин уменьшает величину ек.ср. Это объясняется тем, что увеличивается период коммутации Tк=γπDa/(Kva), а следовательно, снижается средняя величина реактивной э.д.с.


.                              (2.49)


Таким образом, и для рассмотренного случая условие безыскровой коммутации будет иметь вид ер.ср + ек.ср. = 0. При выполнении его ток в секции за период коммутации изменяется на величину


,                                     (2.50)


и коллекторная пластина выходит из-под щетки без разрыва тока. Такую коммутацию называют среднепрямолинейной.

В каждом слое паза якоря реальной машины находится несколько секций, что дает возможность выполнять для них общую изоляцию относительно корпуса, а это увеличивает коэффициент заполнения паза медью и значительно снижает габариты машины и ее стоимость. Секции, расположенные в одних и тех же пазах, имеют хорошую магнитную связь; индуктивность их Lc приблизительно равна взаимоиндуктивности Мп. Поэтому выход из-под щетки коллекторных пластин, связанных со всеми секциями паза, кроме последней, не вызывает электрической дуги даже при разрыве тока, так как малы переходная индуктивность и энергия, выделяющаяся в дуге. Это явление хорошо известно и в практике эксплуатации коллекторных машин – подгорают пластины коллектора, кратные числу секций в пазу. По указанной причине некоторые исследователи коммутации предлагали последнюю секцию в пазу называть самостоятельной, а те секции, которые не вызывают искрения, – несамостоятельными. Следовательно, при расчете коммутации следует стремиться к тому, чтобы не рвался ток при выходе из-под щетки пластины, связанной с самостоятельной секцией, т.е. заканчивающей коммутацию в пазу.

Для каждой из коммутируемых секций, лежащих в одном слое рассматриваемого паза, можно написать уравнение


,                    (2.51)


где Мп–взаимоиндуктивность рассматриваемой секции с другими коммутируемыми секциями, лежащими в одном и том же слое данного паза; Мк–взаимоиндуктивность рассматриваемой секции с другими коммутируемыми секциями, лежащими в соседних пазах. Так как Lc = Mn, то


.                      (2.51а)


Обозначая полный ток во всех секциях, лежащих в каждом слое, через iп = i1 + i2 + · · · + in получаем


.                                         (2.52)


Уравнение (2.52) по форме соответствует уравнению (2.46а), т.е. коммутацию нескольких секций, лежащих рядом в одном пазу, можно рассматривать как коммутацию одной секции, имеющей начальный ток iп в течение времени Тп.

Средняя величина реактивной э.д.с. при коммутации всех секций, лежащих в каждом слое паза, с учетом (2.42):


.                 (2.53)


Соответственно из условия ер.ср + ек.ср = 0 должна выбираться и средняя величина коммутирующей э.д.с.

Обычно γ < uп, что обусловливает некоторые особенности коммутации. Типичная диаграмма изменения тока паза in при коммутации показана на рис. 2.36, а. На первом этапе, когда начинается коммутация секций n-го паза, продолжается коммутация секций предшествующего (n-1) – го паза.

Из условия средне прямолинейной коммутации имеем


Рис. 2.36 – График изменения тока паза (а) и распределение тока между отдельными секциями паза (б) в процессе коммутации:

1 – 4 – токи в сторонах секций верхнего слоя паза,

5 -8 – то же, нижнего слоя паза


,                                       (2.54)


Поэтому


.                                                   (2.54а)


Иными словами, наличие коммутирующих секций в предшествующем пазу уменьшает скорость изменения тока в секциях рассматриваемого паза. В течение времени Т'п, когда происходит коммутация секции только n-го паза, скорость изменения тока iп максимальна и равна (diп/dt)n = Avа/ωс.

Когда начинается процесс коммутации в секциях последующего (n+1) – го паза, скорость изменения тока снова замедляется:



                                                    (2.54б)


Токи между пазами, в которых находятся коммутируемые секции, распределяются соответственно величинам коммутирующих э.д. с. и количеству секций, находящихся в режиме коммутации. Распределение токов между короткозамкнутыми секциями одного паза определяется в основном их активными сопротивлениями, включая сопротивление щеточного контакта. Оно носит в значительной мере случайный характер (рис. 2.36, б), что объясняется нестабильностью щеточного контакта.

В рассматриваемом случае величина остаточного тока, возникающего при нарушениях коммутации,


,


а электромагнитная энергия, выделяющаяся на дуге при искрении, связанном с разрывом остаточного тока,


.

Способы улучшения коммутации. В современных машинах основным средством улучшения коммутации является применение добавочных полюсов, при помощи которых в коммутационной зоне создается магнитное поле, индуктирующее коммутирующую э.д.с. ек.ср требуемой величины. Только в машинах малой мощности (менее 300 Вт) удается обойтись без добавочных полюсов.


Рис. 2.37 – Сдвиг щеток с геометрической нейтрали (а) и кривая результирующего магнитного поля в зоне установки щеток (б)


Создание коммутирующей э.д.с. путем сдвига щеток с геометрической нейтрали 00 на некоторый угол α за физическую нейтраль (рис. 2.37), так чтобы коммутируемые секции оказались в зоне действия магнитного поля с индукцией Врез требуемой величины и направления, применяется крайне редко. В этом случае удается добиться безыскровой работы машины только для одного направления вращения и при одной определенной нагрузке. Изменять же сдвиг щеток в зависимости от направления вращения и режима работы машины практически очень сложно.

Добавочные полюсы устанавливают между главными полюсами (рис. 2.38). Они создают в зоне коммутации магнитное поле с индукцией Вк такой величины, чтобы при вращении якоря в коммутируемых секциях индуктировалась э.д.с. ек.ср = – ер.ср.


Рис. 2.38 – Расположение добавочных полюсов в машине:

1 – добавочные полюсы, 2 – обмотка добавочных полюсов, 3 – обмотка возбуждения, 4 – главные полюсы

Обмотку добавочных полюсов включают последовательно в цепь якоря, а магнитную систему выполняют ненасыщенной. Поэтому коммутирующая э.д.с. ек.ср оказывается пропорциональной току якоря и его линейной скорости va, которая в свою очередь пропорциональна частоте вращения:


.                                        (2.55)


Следовательно, э.д. с. ек.ср изменяется по такому же закону, как и реактивная э.д. с:


.                                                (2.56)


Поэтому если осуществить взаимную компенсацию э.д.с. ер.ср + ек.ср = 0 для какого-то одного режима работы, то их компенсация автоматически обеспечивается и при других режимах. Полярность добавочных полюсов зависит от направления вращения и режима работы машины. В генераторном режиме полярность добавочного полюса должна быть такой же, как у следующего за ним по направлению вращения главного полюса; в двигательном режиме – как у предшествующего ему по направлению вращения главного полюса.

Сердечники добавочных полюсов изготовляют обычно массивными из стальной поковки, хотя иногда применяют и шихтованные, из листов электротехнической стали. Последнее делается в тех случаях, когда в токе якоря имеются переменные составляющие (двигатели пульсирующего тока и т.д.), для того чтобы и э.д.с. ек тоже имела переменные составляющие, пропорциональные току якоря.

Величина индукции Вк под добавочным полюсом обычно мала, так как мала и средняя величина коммутирующей э.д.с. – ек.ср =3 ÷ 10 В. Однако м.д.с. обмотки добавочных полюсов должна быть очень большой, так как она направлена против поперечной составляющей Faq = τA м.д.с. реакции якоря. Поэтому обмотка каждого полюса должна иметь м.д.с.


,                                            (2.57)


где Вк–индукция в воздушном зазоре под добавочными полюсами, которая вычисляется по (2.55) при условии |ек.ср|; = |ер.ср|; δдоб и kδдоб–величина и коэффициент воздушного зазора под добавочными полюсами.

При расчете м.д.с. добавочных полюсов обычно не учитывается возможность получения несколько ускоренной коммутации, так как требуемое ускорение достигается регулировкой воздушного зазора при наладке машины.

Из-за значительной величины м. д. с. Fдo6 поток рассеяния добавочного полюса очень велик и превышает в 2–4 раза полезный поток, замыкающийся через якорь. Для уменьшения потока рассеяния, который может вызвать насыщение сердечника добавочного полюса, в крупных машинах делают второй зазор δдоб2 (рис. 2.39, а), устанавливая диамагнитные прокладки между сердечником полюса и ярмом. В этом случае


,                 (2.58)


где Bк1 и Вк2–индукции в основном и втором зазорах; kδдоб1 – соответствующий коэффициент воздушного зазора; δдоб1 и δдоб2–величины этих зазоров.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.