Рефераты. Синхронные машины. Машины постоянного тока






Экспериментальная проверка коммутации и настройка добавочных полюсов. Обычно машины постоянного тока при выпуске с завода проходят контрольные испытания, в которые входит и проверка качества коммутации (обычно визуальная). Головные образцы машин проходят более основательную проверку коммутации, в процессе которой путем изменения величины воздушных зазоров в магнитной цепи добавочных полюсов устанавливают оптимальную величину коммутирующей э.д.с.

Основным методом проверки и наладки коммутации является экспериментальное определение зоны безыскровой работы (путем подпитки обмотки добавочных полюсов). Для этой цели в обмотку добавочных полюсов от специального генератора (рис. 2.44) подают дополнительный ток ΔI (ток подпитки), вследствие чего изменяется ее м.д.с. Fдo6. При этом изменяются индукция Вк в зоне коммутации и величина коммутирующей э.д.с. ек.ср. При проведении опыта, постепенно увеличивая м. д. с. добавочных полюсов, добиваются появления искрения под щетками и фиксируют ток подпитки +ΔI Затем изменяют направление тока подпитки и повторяют опыт, добиваясь снова появления искрения под щетками при токе – ΔI. Этот опыт проводят при постоянной частоте вращения n и различных значениях тока якоря. По полученным данным строят зону безыскровой работы машины (см. заштрихованную зону на рис. 2.45). Обычно при построении зоны безыскровой работы величину тока подпитки выражают в процентах от номинального тока якоря. Ширина зоны безыскровой работы характеризует устойчивость коммутации машины при случайных отклонениях условий коммутации от оптимальных, что всегда имеет место в эксплуатации. При номинальном режиме предельная допустимая неточность компенсации реактивной э.д.с. примерно равна половине ширины зоны безыскровой работы: Δпред% ≈ 0,5bв.ном%.


Рис. 2.44 – Схема экспериментальной установки для определения зоны безыскровой работы:

Я1 – якорь исследуемой машины: ОВ1 – ее обмотка возбуждения;

ДП – ее обмотка добавочных полюсов; Я2 – якорь вспомогательного генератора;

ОВ2 – его обмотка возбуждения

Рис. 2.45. Зоны безыскровой работы машины постоянного тока


Обычно добавочные полюсы настраивают так, чтобы середина зоны безыскровой работы соответствовала току подпитки, равному нулю. Этому режиму отвечает слегка ускоренная коммутация. Исключение составляют машины, работающие в широком диапазоне изменения частоты вращения. В этом случае также нужно настраивать добавочные полюсы по средней линии зоны безыскровой работы, но зону снимать при частоте вращения машины, близкой к максимальной (рис. 2.45, а). При такой настройке добавочных полюсов в области малых частот вращения машина будет недокоммутирована, т.е. поле в зоне коммутации будет слишком слабым (средняя линия ab зоны безыскровой работы на рис. 2.45, б лежит в области положительных значений тока подпитки ΔI).

Это объясняется тем, что при снижении частоты вращения уменьшается абсолютное значение реактивной э.д.с. и увеличивается роль падения напряжения в переходном контакте между щеткой и коллектором, которое не зависит от частоты вращения. В результате резко расширяется область допустимой перекоммутации, т.е. можно было бы увеличить м. д. с. добавочных полюсов. Несоответствие м. д. с. добавочных полюсов оптимальному расположению зон безыскровой работы при малых частотах вращения не имеет практического значения, так как в рассматриваемых режимах машина менее нагружена в коммутационном отношении и имеет более устойчивую коммутацию, чем при большой частоте вращения[4].


2.8 Генераторы постоянного тока


Свойства генераторов постоянного тока определяются в основном способом питания обмотки возбуждения. В зависимости от этого различают генераторы:

1) с независимым возбуждением–обмотка возбуждения получает питание от постороннего источника постоянного тока;

2) с параллельным возбуждением–обмотка возбуждения подключена к обмотке якоря параллельно нагрузке;

3) с последовательным возбуждением–обмотка возбуждения включена последовательно с обмоткой якоря и нагрузкой;

4) со смешанным возбуждением–имеются две обмотки возбуждения: одна подключена параллельно нагрузке, а другая – последовательно с нею.

Рассматриваемые генераторы имеют одинаковое устройство и отличаются лишь выполнением обмотки возбуждения. Обмотки независимого и параллельного возбуждения, имеющие большое число витков, изготовляют из провода малого сечения, а обмотку последовательного возбуждения, имеющую небольшое число витков, – из провода большого сечения. Генераторы малой мощности иногда выполняют с постоянными магнитами. Свойства таких генераторов близки к свойствам генераторов с независимым возбуждением.

Генератор с независимым возбуждением. В этом генераторе (рис. 2.46) ток возбуждения Iв не зависит от тока якоря Iа, который равен току нагрузки Iн. Величина тока Iв определяется только положением регулировочного реостата rр.в, включенного в цепь обмотки возбуждения:


,                                                   (2.66)


где Uв – напряжение источника питания; rв – сопротивление обмотки возбуждения; rр.в-сопротивление регулировочного реостата.

Обычно ток возбуждения невелик и составляет 1–3% от номинального тока якоря.

Основными характеристиками, определяющими свойства генераторов постоянного тока, являются характеристики холостого хода, внешняя, регулировочная и нагрузочная.


Рис. 2.46. Принципиальная схема генератора с независимым возбуждением


Характеристикой холостого хода (рис. 2.47, а) называют зависимость U0 = f(Iв) при Iн= 0 и n = const. При холостом ходе машины, когда цепь нагрузки разомкнута, напряжение U0 на зажимах якоря равно э.д.с. Е = сеФn.

Обычно частота вращения якоря n поддерживается неизменной и напряжение при холостом ходе зависит только от величины магнитного потока Ф, т.е. оттока возбуждения Iв. Поэтому характеристика U0 = f(Iв) подобна магнитной характеристике Ф = f(Iв)


Рис. 2.47 – Характеристики генератора с независимым возбуждением


Характеристику холостого хода легко снять экспериментально. Вначале устанавливают ток возбуждения таким, чтобы U0 ≈ 1,25Uном; затем уменьшают ток возбуждения до нуля и снова увеличивают до прежнего значения. При этом получаются восходящая и нисходящая ветви характеристики, выходящие из одной точки. Расхождение этих ветвей объясняется наличием гистерезиса в магнитопроводе машины. При Iв = 0 в обмотке якоря потоком остаточного магнетизма индуктируется остаточная э.д.с. Еост, которая составляет 2–4% от Uном.

Внешней характеристикой (рис. 2.47, б) называют зависимость U==f(Iн) при n = const и Iв = const. В режиме нагрузки напряжение генератора


,                                                        (2.67)


где ∑r – сумма сопротивлений всех обмоток, включенных последовательно в цепь якоря (якоря, добавочных полюсов и компенсационной).

С увеличением нагрузки напряжение U уменьшается по двум причинам:

а) из-за падения напряжения во внутреннем сопротивлении ∑r машины;

б) из-за уменьшения э.д.с. Е в результате размагничивающего действия реакции якоря.

Изменение напряжения при переходе от режима номинальной нагрузки к режиму холостого хода


.               .                            (2.68)


Для генераторов с независимым возбуждением оно составляет 5–15%.

Регулировочной характеристикой (рис. 2.47, в) называют зависимость Iв = f(Iн) при U = const и n = const. Она показывает, каким образом следует регулировать ток возбуждения, чтобы поддержать постоянным напряжение генератора при изменении нагрузки. Очевидно, что в этом случае по мере роста нагрузки нужно увеличивать ток возбуждения.

Нагрузочной характеристикой (рис. 2.48, а) называют зависимость U=f(Iв) при n = const и Iн = const. Нагрузочная характеристика при Iн = Iном (кривая 2) проходит ниже характеристики холостого хода (кривая 1), которую можно рассматривать как частный случай нагрузочной характеристики при Iн = 0. Разность ординат кривых 1 и 2 обусловлена размагничивающим действием реакции якоря и падением напряжения во внутреннем сопротивлении ∑r машины. Наглядное представление о влиянии этих факторов дает характеристический, или реактивный, треугольник ABC (рис. 2.48, а). Если к отрезку аА, равному в определенном масштабе напряжению U при некотором токе нагрузки Iн, и некотором токе возбуждения Iв, прибавить отрезок АВ, равный в том же масштабе падению напряжения Iar в генераторе, то получим отрезок аВ, равный э.д.с. Е. При холостом ходе такая э.д.с. индуктируется в обмотке якоря при меньшем токе I'в, соответствующем абсциссе точки С. Следовательно, отрезок ВС характеризует размагничивающее действие реакции якоря в масштабе тока возбуждения. При неизменном токе Iн катет АВ характеристического треугольника является постоянным; катет ВС зависит не только от тока Iн, но и от степени насыщения магнитной системы, т.е. от тока возбуждения Iв. Однако в ряде случаев влиянием тока возбуждения пренебрегают и принимают, что отрезок ВС пропорционален только току Iн.


Рис. 2.48 – Нагрузочная характеристика генератора с независимым возбуждением (а) и ее построение с помощью реактивного треугольника (б)


Это позволяет строить нагрузочные характеристики при разных токах, изменяя лишь величину всех сторон треугольника ABC. Если вершину С характеристического треугольника, построенного для некоторого тока Iн, совместить с характеристикой 1 холостого хода (рис. 2.48, б), а затем перемещать треугольник по этой характеристике так, чтобы катет ВС оставался параллельным оси абсцисс, то след вершины А даст приближенно искомую нагрузочную характеристику 2 при заданной величине тока Iн. Эта характеристика будет несколько отличаться от реальной характеристики 3 (которая может быть снята опытным путем), так как величина катета ВС характеристического треугольника будет изменяться вследствие изменения условий насыщения. Используя характеристику холостого хода, с помощью характеристического треугольника могут быть построены и другие характеристики генератора: внешняя и регулировочная.


Рис. 2.49 – Построение внешней характеристики генератора с независимым возбуждением с помощью характеристического треугольника


Построение внешней характеристики. При построении исходят из характеристики холостого хода 1 (рис. 2.49). Взяв точку D на оси ординат, соответствующую номинальному напряжению Uном, проводят через нее прямую AD, параллельную оси абсцисс. На этой прямой располагают вершину А характеристического треугольника, снятого при номинальном токе якоря так, чтобы катет АВ был параллелен оси ординат, а вершина С находилась на характеристике 1. Затем, опустив перпендикуляр из вершины А на ось абсцисс, находят точку Ак, соответствующую номинальному току возбуждения Iв.ном.

При этом способе определения тока Iв.ном исходят из того, что под действием реакции якоря э.д.с. при нагрузке будет меньше, чем при холостом ходе, т.е. будет создаваться как бы меньшим током возбуждения. Это уменьшение тока Iв соответствует отрезку ВС, характеризующему размагничивающее действие реакции якоря. Напряжение при номинальном токе также будет меньше э.д.с. на величину падения напряжения r, которому соответствует катет АВ.

При построении искомой зависимости 2 напряжения U от тока нагрузки I = ее точки могут быть легко определены: номинальному току Iа.ном отвечает номинальное напряжение Uном (точка b), а режиму холостого хода (ток якоря равен нулю) – напряжение U0 (точка а), равное э.д.с. при токе возбуждения Iв.ном. Другие точки (с, d и т.д.) внешней характеристики можно построить, изменяя все стороны характеристического треугольника прямо пропорционально изменению тока якоря и располагая его так, чтобы катеты А'В', А «В» и т.д. оставались параллельными оси ординат. При этом точки В, В', В» и т.д. должны располагаться на вертикальной линии АкВ, соответствующей току возбуждения Iв.ном, а точки С, С', С» и т.д. на характеристике холостого хода. Тогда ординаты точек В', В» и т.д. будут определять величину напряжения при токах нагрузки Iа1= номА'В'/AB; Iа2=IаномА "В»/АВ и т.д.

Обычно при построении внешней характеристики 2 проводят только гипотенузы характеристических треугольников А'С', А «С» и т.д., параллельные АС, до пересечения с характеристикой холостого хода и с линией АкВ, соответствующей току Iв.ном. Ординаты найденных точек А', А» и т.д. дадут искомые величины напряжений (т.е. точки с, d и т.д. внешней характеристики 2), при токах нагрузки


:::···=АС:А'С':А «С»: ··.


Если из точки Ак, соответствующей Iв.иом, провести прямую, параллельную АС, до пересечения с характеристикой холостого хода в точке Ск, то получим величину тока короткого замыкания Iк = IномАкСк/АС, которая в 5–15 раз превосходит номинальный ток. Зная ток короткого замыкания, можно рассчитать максимальный момент и механическую прочность вала, выбрать аппаратуру защиты и т.д. Экспериментальное определение тока короткого замыкания затруднительно, так как в процессе проведения опыта может возникнуть круговой огонь.

Построенная характеристика является приближенной. Основная погрешность обусловлена тем, что размагничивающее действие реакции якоря (т.е. катет ВС) не пропорционально току якоря. Обычно приведенное построение дает несколько заниженное значение напряжения, а также тока короткого замыкания.

Построение регулировочной характеристики (рис. 2.50). Это построение начинают с того, что находят ток возбуждения, соответствующий номинальному напряжению при холостом ходе. Чтобы определить ток возбуждения при номинальном токе нагрузки, вершину А характеристического треугольника (соответствующего номинальной нагрузке) располагают на прямой 2, параллельной оси абсцисс и находящейся от нее на расстоянии Uном. Катет АВ должен быть параллелен оси ординат, а вершина С должна располагаться на характеристике холостого хода 1. Абсцисса вершины А дает искомую величину тока возбуждения. Доказательство справедливости этого построения дано при построении внешней характеристики.

Проводя прямые, параллельные гипотенузе АС, получим отрезки А'С', А «С», А' «С'» и т.д., заключенные между характеристикой холостого хода 1 и прямой 2, соответствующей условию U = Uном = const. Эти отрезки представляют собой гипотенузы характеристических треугольников при других токах нагрузки. Искомая регулировочная характеристика Iв = f() – кривая 3 – построена в нижнем координатном углу. Значения тока возбуждения определяются абсциссами точек А, А', А» и т.д., которым соответствуют токи нагрузки, пропорциональные длинам отрезков АС, А'С', А «С» и т.д.



Рис. 2.50 – Построение регулировочной характеристики с помощью характеристического треугольника


Рис. 2.51 – Принципиальная схема генератора с параллельным возбуждением


Достоинствами генераторов с независимым возбуждением являются возможность регулирования напряжения в широких пределах от нуля до Uмакс путем изменения тока возбуждения и сравнительно малое изменение напряжения генератора под нагрузкой. Однако такие генераторы требуют наличия внешнего источника постоянного тока для – питания обмотки возбуждения.

Генератор с параллельным возбуждением. В этом генераторе (рис. 2.51) обмотка возбуждения присоединена через регулировочный реостат параллельно нагрузке. Следовательно, в машине используется принцип самовозбуждения, при котором обмотка возбуждения получает питание непосредственно от самого генератора. Самовозбуждение генератора возможно только при выполнении определенных условий. Чтобы установить их, рассмотрим процесс изменения тока в контуре «обмотка возбуждения – якорь» при режиме холостого хода. Для рассматриваемого контура можно написать уравнение

e = iBRB + LBdiB/dt,                                     (2.69)


где е и iв–мгновенные значения э.д.с. Е в обмотке якоря и тока возбуждения Iв; Rв = rв + rр.в–суммарное сопротивление цепи возбуждения генератора (сопротивлением ∑r можно пренебречь, так как оно значительно меньше Rв); Lв–суммарная индуктивность обмоток возбуждения и якоря.

Все члены, входящие в (2.69), могут быть изображены графически. На рис. 2.52 показаны зависимость e = f(iв), представляющая собой характеристику холостого хода генератора ОА, и вольт-амперная характеристика сопротивления его цепи возбуждения iвRв = = f(iв). Последняя представляет собой прямую ОВ, проходящую через начало координат под углом у к оси абсцисс; при этом tgγ=Rв. Из (2.69) имеем

diB/dt=(e-iBRB)/LB.                                                  (2.70)


Следовательно, если имеется положительная разность iвrв), то производная diв/dt > 0 и происходит процесс увеличения тока возбуждения iв. Установившийся режим в цепи обмотки возбуждения будет иметь место при diв/dt = 0, т.е. в точке С пересечения характеристики холостого хода с прямой 0В. В этом режиме машина будет работать с некоторым установившимся током возбуждения Iв0 и э.д.с. Е0= U0.

Из уравнения (2.70) следует, что для самовозбуждения генератора необходимо выполнение определенных условий.

1. Процесс самовозбуждения в генераторе может начаться только в том случае, если в начальный момент (iв = 0) в обмотке якоря индуктируется некоторая начальная э.д.с. енач. Такая э.д.с. может быть создана потоком остаточного магнетизма. Поэтому для начала процесса самовозбуждения генератора необходимо, чтобы в машине имелся поток остаточного магнетизма, который при вращении якоря индуктирует в его обмотке э.д.с. Еост. Обычно поток остаточного магнетизма имеется в машине из-за наличия гистерезиса в ее магнитной системе. Если такой поток отсутствует, то его создают, пропуская через обмотку возбуждения ток от постороннего источника.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.