Рефераты. Синхронные машины. Машины постоянного тока






Воздействие м.д.с. якоря на магнитное поле синхронной машины называют реакцией якоря. Так как под действием реакции якоря изменяется результирующий поток в машине, напряжение генератора, работающего в автономном режиме, будет зависеть от величины и характера нагрузки, а также от индивидуальных особенностей машины: величины м.д.с. обмотки возбуждения, свойств магнитной системы и т.д. Рассмотрим, как проявляется реакция якоря при двух основных конструктивных формах синхронных машин – неявнополюсных и явнополюсных.

Неявнополюсная машина. В этой машине величина воздушного зазора между статором и ротором по всей окружности остается неизменной, поэтому результирующий магнитный поток машины Фрез и создаваемая им э.д.с. Е при любой нагрузке могут быть определены по характеристике холостого хода исходя из результирующей м.д.с. Fрез. Однако при отсутствии насыщения в магнитной цепи машины этот метод определения потока Фрез может быть существенно упрощен, так как от сложения указанных м.д.с. можно перейти к непосредственному векторному сложению соответствующих потоков:


Фрез=Фв+Фа,


как это показано на рис. 1.18 и 1.19.



Рис. 1.18 – Реакция якоря в неявнополюсной машине при различных условиях нагрузки


При ψ= 0 (рис. 1.18, а и 1.19, а) ток в фазе А X достигает максимума в момент времени, когда оси полюсов N и S совпадают с осью среднего паза рассматриваемой обмотки. Для этого случая показаны диаграммы распределения основных гармоник магнитных полей.

Кривая распределения индукции Ba = f(x) для двухполюсной машины будет смещена относительно кривой индукции Bв = f(x) в пространстве на 90°, т.е. поток якоря Фа действует в направлении, перпендикулярном действию потока возбуждения Фв (поперек оси полюсов). В теории синхронной машины ось, проходящую через середину полюсов, называют продольной и обозначают буквами dd; ось, проходящую между полюсами, называют поперечной и обозначают qq. Следовательно, при ψ = 0 поток якоря действует по поперечной оси машины, размагничивая одну половину каждого полюса и подмагничивая другую. Кривая распределения результирующей индукции Bрез = f(x) при этом сдвигается относительно кривой Bв = f(x) против направления вращения ротора. В соответствии с пространственным сдвигом кривых распределения индукции сдвигаются и векторы потоков на временной векторной диаграмме, т.е. вектор  отстает от вектора потока возбуждения  на 90°. Вектор результирующего потока ; его модуль



При ψ = 90° (рис. 1.18, б и 1.19, б) ток в фазе АX достигает максимума на 1/4 периода позднее момента, соответствующего максимуму э.д.с. Е0. За это время полюсы ротора перемещаются на 1/2 полюсного деления, вследствие чего кривая Ba = f(x) смещается относительно кривой Bв = f(x) на 180°. При этом поток якоря  действует по продольной оси машины против потока возбуждения ; результирующий поток  сильно уменьшается, вследствие чего уменьшается и э.д.с. якоря Ė. Таким образом, при ψ = 90° реакция якоря действует на машину размагничивающим образом.

При ψ = – 90° (рис. 1.18, в и 1.19, в) поток якоря также действует по продольной оси машины, но совпадает по направлению с потоком возбуждения. Следовательно, реакция якоря действует на машину подмагничивающим образом, увеличивая ее результирующий поток  и э.д.с. Ė.

Выводы, полученные при рассмотрении трех случаев нагрузки, можно распространить и на общий случай, когда –90° < ψ < 90°. При этом характерным является то, что отстающий ток (активно-индуктивная нагрузка) размагничивает машину, а опережающий ток (активно-емкостная нагрузка) подмагничивает ее.

Э.д.с. Е при работе генератора под нагрузкой можно рассматривать как сумму двух составляющих:


.                                                 (1.12)


Рис. 1.19 – Кривые распределения индукции в неявнополюсной машине и векторные диаграммы потоков и э. д. с. при различных углах ψ


Э.д.с. Еа пропорциональна потоку Фа, т.е. току 1а в обмотке якоря, поэтому ее можно рассматривать как э.д.с. самоиндукции, индуктированную в обмотке якоря, и представить в виде


,


где ха – индуктивное сопротивление синхронной машины, обусловленное потоком реакции якоря.

Явнополюсная машина. В этой машине воздушный зазор между статором и ротором не остается постоянным, так как он расширяется по направлению к краям полюсов и резко увеличивается в зоне междуполюсного пространства. По этой причине поток якоря здесь зависит не только от величины м.д.с. Fa якоря, но и от положения кривой распределения этой м.д.с. Fa = f (x) относительно полюсов ротора, так как одна и та же м.д.с. якоря в зависимости от ее пространственного положения создает различный магнитный поток. Так, например, при угле ψ = 0 (рис. 1.20, а), когда поток якоря направлен по поперечной оси машины, кривая распределения индукции Ba=Baq имеет седлообразную форму, хотя м.д.с. Fа якоря распределена синусоидально. При этом максимуму м.д.с. Fa соответствует небольшая индукция, так как магнитное сопротивление воздушного зазора максимально. При угле ψ = 90° (рис. 1.20, б), когда поток якоря направлен по продольной оси машины, кривая распределения индукции Ва = Bad расположена симметрично относительно оси полюсов. В этом случае индукция имеет большее значение, чем при ψ = 0, так как магнитное сопротивление воздушного зазора в данном месте невелико. Соответственно различные максимальные значения будут иметь и первые гармоники Bad1 и Ваq1 указанных кривых.


Рис. 1.20 – Кривые распределения м. д. с. реакции якоря и создаваемых ею индукций в явнополюсной машине


Чтобы избежать трудностей, связанных с изменением результирующего сопротивления воздушного зазора при различных режимах работы машины, при анализе работы явнополюсной синхронной машины следует использовать так называемый метод двух реакций. Согласно этому методу, м.д.с. Fa в общем случае представляют в виде суммы двух составляющих: продольной Fad = Fasinψ и поперечной Faq = Facosψ (рис. 1.21, а), причем Fa = Fad + Faq. Продольная составляющая Fad создает продольный поток якоря Фаd, индуктирующий в обмотке якоря э.д.с. Ead, а поперечная составляющая Faq – поперечный поток Фаq, индуктирующий э.д.с. Eaq, причем принимают, что эти потоки не оказывают влияния друг на друга. В соответствии с принятым методом ток якоря Iа, создающий м.д.с. Fа, также представляют в виде двух составляющих: продольной Id и поперечной Iq (рис. 1.21, б).


Рис. 1.21 – Разложение векторов м.д.с. и тока якоря на продольную и поперечную составляющие


Величину магнитных потоков Фаd и Фаq и индуктируемых ими э.д.с. Ead и Eaq можно определить по кривой намагничивания машины или по спрямленной характеристике (рис. 1.22). Однако кривая намагничивания строится для м.д.с. возбуждения Fв, имеющей не синусоидальное, а прямоугольное распределение вдоль, окружности якоря. Чтобы воспользоваться указанной кривой или спрямленной характеристикой, м.д.с. Fad и Faq следует привести к прямоугольной м.д.с. возбуждения Fв, т.е. найти их эквивалентные значения Fad' и Faq'.

Установление эквивалентных значений Fad' и Faq' производят на основании следующих соображений: м.д.с. Fad и Faq создают в воздушном зазоре машины индукции Bad и Ваq, распределенные вдоль окружности якоря так же, как и индукции, создаваемые м.д.с. Fа соответственно при углах ψ = 0 и ψ = 90о (см. рис. 1.20, а, б). Первые гармоники Bad1 и Baq1 кривых Bad = f(x) и Baq = f(x) образуют магнитные потоки


Фad=Fad/rм ad; Фaq= Faq/rм aq.


где rм ad и rм aq – магнитные сопротивления для соответствующих потоков, учитывающие не только форму воздушного зазора, но и синусоидальность кривой распределения м.д.с. Fad и Faq вдоль окружности якоря.

М.д.с. возбуждения создавала бы такие же потоки Фаd и Фаq при меньших величинах м.д.с. F'ad и F'aq:


; .


Рис. 1.22 – Векторная диаграмма потоков Фad и Фаq и э. д. с. Ead и Eaq (а) явнополюсной машины и их определение по характеристике холостого хода (б)


Из последних выражений можно найти коэффициенты реакции якоря kd и kq, характеризующие уменьшение эффективных значений м.д.с. якоря:


; .                            (1.13)


где rм.в–магнитное сопротивление для потока возбуждения, учитывающее форму воздушного зазора по продольной оси машины и прямоугольное распределение м.д.с. Fв вдоль окружности якоря. Чтобы определить коэффициенты kd и kq, необходимо знать, как распределяются вдоль окружности якоря индукции Bad и Baq, созданные продольной Fad и поперечной Faq составляющими м.д.с. якоря, и их первые гармоники Bad1 и Baq1. Для характеристики этого распределения используют коэффициенты формы поля реакции якоря по продольной kad и поперечной kaq осям, аналогичные по своей структуре коэффициенту формы поля обмотки возбуждения kв:


;                                          (1.14а)


где Badm1 и Baqm1–амплитуды первых гармоник реального распределения магнитной индукции; Badm и Baqm – максимальные значения индукций Bad и Baq вычисленные в предположении, что воздушный зазор между статором и ротором равномерный, равный его значению под серединой полюса.

Коэффициенты kad и kaq зависят от тех же параметров αi, δ/τ и δмакс/δ, что и коэффициент kв, причем (см. рис. 1.20) kaq < kad.

Из условий равенства первых гармоник индукций, созданных м.д.с. якоря F аd и эквивалентной ей м.д.с. возбуждения F'ad и соответственно Faq и F'aq, имеем kadFad = kвF'ad; kaqFaq = kвF'aq, откуда


; .                              (1.14б)


Коэффициенты kd и kq физически характеризуют уменьшение магнитного сопротивления для потока Фв по сравнению с потоками Фаd и Фаq Обычно kd= 0,8 ÷ 0,95; kq = 0,3 ÷ 0,65.

В машине с явно выраженными полюсами э.д.с. Е при работе генератора под нагрузкой можно представить как сумму трех составляющих:


.                                        (1.15)


Э.д.с. Ead и Eaq, индуктируемые продольным Фаd и поперечным Фaq потоками якоря, представляют собой по существу э.д.с. самоиндукции, так как сами потоки Фаd и Фаq создаются м.д.с. Fad и Faq, пропорциональные токам Id и Iq. Поэтому для ненасыщенной машины можно считать, что


; ,                                 (1.16)


где хаd и хаq–индуктивные сопротивления обмотки якоря, соответствующие полям продольной и поперечной реакций якоря, причем


xad/xaq=kad/kaq.                                                       (1.17)


Для машины с неявно выраженными полюсами м.д.с. якоря приводится к м.д.с. обмотки возбуждения по формуле


F'a=kdFa.


1.6 Векторные диаграммы синхронного генератора


При анализе работы синхронных машин обычно используют векторные диаграммы: при качественном–упрощенные диаграммы, справедливые для машин, в которых отсутствует насыщение, а при количественном–уточненные диаграммы.


Неявнополюсная машина. Для цепи якоря неявнополюсной синхронной машины можно написать уравнение


                                                    (1.18а)


или


,            (1.18б)


где Esa – э.д.с, индуктированная в обмотке якоря потоком рассеяния; xsa–индуктивное сопротивление, обусловленное этим потоком.

На рис. 1.23, а изображена векторная диаграмма, построенная по (1.18б), называемая диаграммой Потье. Эта диаграмма позволяет определить э. д. с. холостого хода Е0 с учетом насыщения машины, если заданы напряжение, ток нагрузки (по величине и фазе), характеристика холостого хода и параметры машины. Сначала по известным падениям напряжения строится вектор э. д. с.


.                                               (1.18)


Рис. 1.23 – Векторная диаграмма синхронной неявнополюсной машины (а) и определение э. д. с. по характеристике холостого хода (б)

Так как э.д. с. Е индуктируется результирующим потоком Фрез, который создается результирующей м.д. с.



по характеристике холостого хода (рис. 1.23, б) можно определить Fрез, соответствующую э.д. с. Е. Вектор  совпадает по фазе с вектором , а оба эти вектора опережают по фазе вектор Ė на 90°.

Зная  и параметры машины, можно найти м.д.с. возбуждения


,


а затем по характеристике холостого хода определить величину э.д. с. холостого хода Е0. Вектор Ė0 отстает от вектора  на 90°.

Если требуется перейти от режима холостого хода к режиму нагрузки, то построения производят в обратном порядке.

Если машина не насыщена, то векторная диаграмма существенно упрощается, так как в этом случае складывают не м.д. с.  и , а соответствующие им потоки и э. д. с. Упрощенную векторную диаграмму синхронной неявнополюсной машины (рис. 1.24, а) строят по уравнению (1.18 б), которое с учетом (1.12) принимает вид


.            (1.19а)


Поскольку падение напряжения в активном сопротивлении обмотки статора Iаrа сравнительно невелико, им можно пренебречь. Заменяя, кроме того, в уравнении (8–19а) Ėа = jİаха, получим


.                                   (1.19б)


Величину xa + xsa = xсн называют полным или синхронным индуктивным сопротивлением машины. Следовательно, уравнение (1.19б) может быть представлено в виде


.                                                      (1.19в)


Упрощенная векторная диаграмма, соответствующая уравнению (1.19в), изображена на рис. 1.24, б; ее широко используют при качественном анализе работы синхронной машины. Необходимо, однако, отметить, что определение Ė0 по упрощенной диаграмме дает несколько большую величину, чем по точной диаграмме (см. рис. 1.23, а), в которой учитывается насыщение.


Рис. 1.24 – Упрощенная векторная диаграмма синхронной неявнополюсной машины с учетом (а) и без учета (б) активного падения напряжения в якоре


Угол θ между векторами Ù и Ė0 называют углом нагрузки. При работе синхронной машины в генераторном режиме напряжение Ù всегда отстает от э.д.с. Ė0, в этом случае угол θ считается положительным. Чем больше нагрузка генератора (отдаваемая им мощность), тем больше угол θ.


Явнополюсная машина. Упрощенную диаграмму синхронной явнополюсной машины также можно построить по общему уравнению (1.18а), которое с учетом (1.15) принимает вид


.                    (1.20а)


На рис. 1.25, а приведена векторная диаграмма, соответствующая уравнению (1.20а). Если пренебречь малой величиной rа, то


.                                          (1.20б)


Э. д. с. Ėsa, индуктируемую в обмотке якоря потоком рассеяния, можно представить в виде суммы двух составляющих – Ėsad и Ėsaq, ориентированных по осям dd и qq:


,                                                    (1.21)


где


; ,                                 (1.22)


так как


;



Рис. 1.25 – Упрощенные векторные диаграммы синхронной явнополюсной машины:

а–с учетом активного падения напряжения в якоре: б – без учета этого падения напряжения; в–с заменой э. д. с. на реактивные падения напряжения


С учетом (1.22) вместо (1.20б) получим


,                   (1.23а)


где Ėd = Ėad + Ėsad и Ėq = Ėaq + Ėsaq.

Векторная диаграмма, построенная по (1.23а), приведена на рис. 1.25, б.

Заменяя э. д. с. соответствующими реактивными падениями напряжения, будем иметь


,        (1.23б)


где xd = xad + xsa; xq = xaq + xsa.

Сопротивления xd и xq называют полными или синхронными индуктивными сопротивлениями обмотки якоря по продольной и поперечной осям.

На рис. 8–25, в приведена векторная диаграмма, построенная по (8–23б). Если заданы векторы тока İа и напряжения Ù, а угол ψ неизвестен, то его можно определить, проведя из конца вектора напряжения Ù отрезок , равный Iахq и перпендикулярный вектору тока. Конец построенного отрезка будет расположен на векторе э.д. с. Ė0 или его продолжении, так как проекция отрезка  на вектор Ėq равна модулю этого вектора:


.


1.7 Внешние и регулировочные характеристики синхронного генератора

Построение внешних характеристик. Внешние характеристики синхронного генератора представляют собой зависимости напряжения U от тока нагрузки при неизменных токе возбуждения Iв, угле φ и частоте f1 (постоянной частоте вращения ротора n2).


Рис. 1.26 – Упрощенные векторные диаграммы синхронной неявнополюсной машины


Они могут быть построены при помощи векторных диаграмм. Допустим, что при номинальной нагрузке ном генератор имеет номинальное напряжение Uном, что достигается соответствующим выбором тока возбуждения. При уменьшении тока нагрузки до нуля напряжение генератора станет равным э.д. с. холостого хода Е0. Таким образом, векторная диаграмма, построенная при номинальной нагрузке, сразу дает две точки внешней характеристики. Форма внешней характеристики зависит от характера нагрузки, т.е. от угла сдвига фаз φ между Ù и İа, так как в зависимости от этого угла изменяется величина вектора Ė0 (при заданном значении U = Uном).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.