5.1.3) Активный объём топочной камеры определяют по формуле:
Эффективная толщина излучающего слоя:
V.2 Расчёт теплообмена в топке
5.2.1) Расчёт основан на приложении теории подобия к топочным процессам. Расчётная формула связывает температуру газов на выходе из топки qт’’ с критерием Больцмана Bo, степенью черноты топки ат и параметром М, учитывающим характер распределения температур по высоте топки и зависящим от относительного местоположения максимума температур пламени, который определяется схемой размещения и типом горелок.
При расчёте теплообмена используют в качестве исходной формулу:
Где Tт’’ = Jт’’ + 273 - абсолютная температура газов на выходе из топки, [K]; Ta = Ja + 273 -температура газов, которая была бы при адибатическом сгорании топлива, [K]; Bо – критерий Больцмана, определяемый по формуле:
Из этих формул выводятся рясчётные.
5.2.2) Определяем полезное тепловыделение в топке Qт и соответствующую ей адиабатическую температуру горения Та :
Где количество тепла, вносимое в топку с воздухом Qв, определяют по формуле:
Полезное тепловыделение в топке Qт соответствует энтальпии газов Iа, котрой располагали бы при адиабатическом сгорании топлива, т.е Qт= Iа Þ Та=2352,4 К;
5.2.3) Параметр М, характеризующий температурное поле по высоте топки, определяют по формуле:
М=А-B×xт; где А и В опытные коэффициенты, значения которых принимают: А=0,54; В=0,2; (при камерном сжигании мазута).
Относительное положение максимума температур факела в топке определяют по формуле:
Хт= Хг+ DХ; где Хг – относительный уровень расположения горелок, представляющий собой отношение высоты расположения осей горелок hг (от пода топки) к общей высоте топки Нт (от пода топки до середины выходного окна из топки, т.е. Хг = hг/ Нт ); DХ – поправка на отклонение максимума температур от уровня горелок, принимаемая для газомазутных топок с производительностью >35т/ч DХ=0;
При расположении горелок в несколько ярусов и одинаковом числе горелок в ярусе высоту расположения определяют расстоянием от средней линии между ярусами горелок до пода или до середины холодной воронки; при разном числе горелок в каждом ярусе:
где n1, n2 и т.д. – число горелок в первом, втором и т.д. ярусах; h1г, h1г и т.д. – высота расположения осей ярусов.
М = 0,54·0,2·0,2459=0,4908
5.2.4) Степень черноты топки ат и критерий Больцмана В0 зависят от искомой температуры газов на выходе uг’’.
Принимаем uг’’ = 1100 0С:
Среднюю суммарную теплоёмкость продуктов сгорания определяют по формуле:
где аф – эффективная степень черноты факела:
где асв и аг – степень черноты,которой обладал бы факел при заполнении всей топки соответственно только светящимся пламенем или только несветящимися трёхатомными газами; m – коэффициент усреднения, зависящий от теплового напряжения топочного объёма и m=0,55 для жидкого топлива.
Величины асв и аг определяют по следующим формулам:
Где Sт – эффективная толщина излучаемого слоя в топке; P – давление в топке, для паровых котлов, работающих без наддува Р = 1 кгс/см2.
Коэффициент ослабления лучей kг топочной средой определяют по номограмме.
Коэффициент ослабления лучей kс сажистыми частицами определяют по формуле:
где Tт’’ - температура газов на выходе из топки; Cр/Hp - соотношение содержания углерода и водорода в рабочей массе топлива;
5.2.6)тОпределяем количество тепла, переданное излучением в топке:
5.2.7) Определим тепловые нагрузки топочной камеры:
Удельное тепловое напряжение объёма топки:
Допуск 250¸300 Мкал/м3×ч;
Удельное тепловое напряжение сечения топки в области горелок
VI Поверочный расчёт фестона
6.1) В котле, разрабатываемом в курсовом проекте, на выходе из топки расположен трёхрядный испарительный пучок, образованный трубами бокового топочного экрана, с увеличенным поперечными и продольными шагами и называемый фестон. Изменение конструкции фестона связано с большими трудностями и капитальными затратами, поэтому проводим поверочный расчёт фестона.
Задачей поверочного расчёта является определение температуры газов за фестоном Jф’’ при заданных конструктивных размерах и характеристиках поверхности нагрева, а также известной температуре газов перед фестоном, т.е на выходе из топки.
6.2) По чертежам парового котла составляют эскиз фестона.
6.3) По чертежам парового котла составляем таблицу:
Наименование величин
Обозн.
Раз-ть
Ряды фестона
Для всего фестона
1
2
3
Наружный диаметр труб
d
м
0,06
Количество труб в ряду
z1
--
23
24
-
Длина трубы в ряду
lI
2,3
1,275
Шаг труб:
поперечный
S1
0,21
продольный
S2
0,35
0,775
0,5197
Угловой коэф фестона
xф
Расположение труб
шахматное
Расчётная пов-ть нагрева
H
м2
9,966
8,666
5,765
24,3977
Размеры газохода:
высота
aI
2,25
2,05
ширина
b
5
Площадь живого сечения
F
8,283
7,611
4,539
6,7646
Относительный шаг труб:
S1/d
3,5
S2/d
5,833
12,92
8,6616
Эффективная толщина излучающего слоя
Sф
2,03
Длину трубы в каждом ряду li определяем по осевой линии трубы с учётом её конфигурации от плоскости входа трубы в обмуровку топки или изоляцию барабана до точки перечения оси трубы каждого ряда с плоскостью ската горизонтального газохода. Количество труб в ряду z1 определяют по эскизу, выполнив по всей ширине газохода разводку труб экрана в фестон.
Поперечный шаг S1 равен утроенному шагу заднего экрана топки, т.к. этот экран образует три ряда фестона. Поперечные шаги для всех рядов и всего фестона одинаковы. Продольный шаг между первым и вторым рядами определяют как кратчайшее расстояние между осями труб этих рядов S2’, а между вторым и третьим рядами S2’’ как длину отрезка между осями труб второго и третьего рядов, соединяющего их на половине длины труб. Среднее значение продольного шага для фестона определяют с учетом расчетных поверхностей второго и третьего рядов труб, существенно различающихся по величине:
Принимаем xф = 1, тем самым увеличиваем конвективную поверхность пароперегревателя
(в пределах 5%), что существенно упрощает расчёт.
По S1ср и S2ср определяем эффективную толщину излучающего слоя фестона Sф
6.4) Расположение труб в пучке – шахматное, омывание газами – поперечное (угол отклонения потока от нормали не учитываем). Высоту газохода ‘а’ определяют в плоскости, проходящей по осям основного направления каждого ряда труб в границах фестона. Ширина газохода ‘b’ одинакова для всех рядов фестона, её определяют как расстояние между плоскостями, проходящими через оси труб правого и левого боковых экранов.
6.5) Площадь живого сечения для прохода газов в каждом ряду:
Fi = ai×b - z1× liпр×d;
где liпр – длина проекции трубы на плоскость сечения, проходящую через ось труб расчитываемого ряда.
Fср находим как среднее арифметическое между F1 и F3.
6.6) Расчётная поверхность нагрева каждого ряда равна геометрической поверхности всех труб в ряду по наружному диаметру и полной обогреваемой газами длине трубы, измеренной по её оси с учётом конфигурации, т.е гибов в пределах фестона:
Нi = p×d×z1i× li;
где z1i – число труб в ряду; li – длина трубы в ряду по её оси.
Расчётная поверхность нагрева фестона определяют как сумму поверхностей всех рядов:
Нф = Н1 + Н2 + Н3 = 9,966+8,666+5,765 = 24,3977 м;
На правой и левой стене газохода фестона расположена часть боковых экранов, поверхность которых не превышает 5% от поверхности фестона:
Ндоп = SFст·xб = (1,7062 + 1,7062)·0,99 = 3,3782 Þ Нф’ = Нф + Ндоп = 27,776 м;
6.7) Составляем таблицу исходных данных для поверочного теплового расчёта фестона.
6.8) Ориентировочно принимают температуру газов за фестоном на 30¸1000С ниже, чем перед ним:
Обозначение
Размерность
Величина
Температура газов перед фестоном
Jф’=Jт’’
0С
1053,4
Энтальпия газов перед фестоном
I ф’=I т’’
ккал/кг
4885,534
Объёмы газов на выходе из топки
при a¢¢т
Vг
м3/кг
12,559
Объёмная доля водяных паров
rH2O
0,1216
Объёмная доля трёхатомных газов
rRO2
0,2474
Температура состояния насыщения
при давлении
в барабане Рб=45кгс/см2
tн
256,23
Для газов за фестоном находим энтальпию при
и по уравнению теплового баланса определяем тепловосприятие фестона:
6.9 Уравнение теплопередачи для всех поверхностей нагрева записывают в следующем виде:
где k - коэффициент теплопередачи, Dt - температурный напор,
Н - расчётная поверхность нагрева.
6.9.1)При сжигании мазута коэффициент теплопередачи определяют по формуле:
Где aк - коэффициент теплоотдачи конвекцией; aл - коэффициент теплоотдачи излучением газового объёма в трубном пучке; y - коэффициент тепловой эффективности поверхности; x = 1.
Страницы: 1, 2, 3, 4, 5