Выбор аппаратов защиты
Токоведущие части (шины, кабели), изоляторы и аппараты всех видов (выключатели, разъединители, предохранители, измерительные трансформаторы тока) должны проверятся на соответствие номинальных параметров расчётным в нормальном режиме и при коротких замыканиях.
Для станков, где используются электрические двигатели, рационально применять магнитный пускатель.
Как пример рассчитаем и выберем пускозащитный аппарат для токарного станка.
Рассчитаем ток срабатывания защитного аппарата.
Iср.теп.рас.≥1.25*Iр (2.30)
где
Iр
–
расчётный ток ЭП, Iр=24А
Iср.теп.рас.≥1.25*24=30А
Затем проверим аппарат по условию.
Iд.д≥Кз*Iср.защ.ап
Кз
коэффициент защиты, принимается, Кз=1
Iд.д
длительно-допустимый ток, Iд.д =55А
55≥1*30
Если условие выполняется то выбираем из каталога магнитный пускатель ПМЛ – 40/40, номинальным напряжением Uн=0.38 кВ
Для каждого ЭП и узла в целом надо выбрать автомат.
Рассчитаем и выберем автоматический выключатель для радиально-сверлильного станка.
Iср.тп.рс≥1.25*Iр (2.32)
1.25
кратность установки
расчётный ток ЭП, А
Iср.тп.рс≥1.25*50=62.5 А
Рассчитаем ток электромагнитного расцепителя.
Iу.э.о.≥1.2*Iпуск (2.33)
Iпуск
пусковой ток, А, Iпуск= λ*Iр
λ
заданное значение, принемается λ=6
Iу.э.о.≥1.2*6*50=360 А
Выбираем из каталога автомат ВА 51Г-31 100/80.
Рассчитаем и выберем автоматический выключатель для узла РП 1.
Iср.тп.рс≥1.1*Iр (2.34)
Iср.тп.рс≥1.1*123=135
Рассчитаем пиковый ток для узла.
Iпик=Iпуск(м)+Iр-Ки*Iном(м) (2.35)
Iпуск(м)
пусковой ток самого мощного ЭП,А
Ки
коэффициент использования группы ЭП
Iном(м)
расчётный ток самого мощного ЭП,А
расчётный ток группы ЭП, А
Iпик=300+123-0.14*50=416 А
Iу.э.о.≥1.25*Iпик (2.36)
Iу.э.о.≥1.25*416=520 А
Выбираем по каталогу автомат ВА 51Г-33 160/160.Для остальных ЭП расчёты аналогичны и сведены в таблицу 2.9
2.8 Расчёт и выбор числа и мощности силовых трансформаторов, технико-экономическое сопоставление возможных вариантов
Правильный выбор числа и мощности трансформаторов имеет существенное значение для рационального построения СЭС. Число трансформаторов, как и число питающих линий, определяется в зависимости от категории потребителей. Наиболее просты и дешёвы однотрансформаторные подстанции. При наличие складского резерва или связей на вторичном напряжении эти подстанции обеспечивают надёжное электроснабжение потребителей второй и третьей категории.
Если основная часть нагрузки составляют потребители первой и второй категории, то применяют двухтрансформаторные подстанции.
При выборе мощности трансформатора необходимо исходить из экономической нагрузки, допустимой перегрузки, числа часов использования максимума нагрузки, темпов роста нагрузки, расчётной нагрузки. При выходе одного трансформатора или линии из строя, второй трансформатор не должен быть перегружен более чем на 40 % в течении 5 сут по 6 ч в каждые сутки.
Чтобы выбрать наиболее рациональный вариант электроснабжения, мы рассмотрим два варианта числа и мощности трансформатора, сравнивая их по технико-экономическим показателям.
Рассчитаем полную нагрузку с учётом компенсирующего устройства.
Sсм=√Рсм2+(Qсм Qку) 2 (2.37)
Qку
мощность компенсирующего устройства, Qку=35 квар
Sсм=√57.52+(53 – 35) 2 =60.25 кВА
Рассчитаем и выберем мощность трансформатора.
Sтр=Sсм/n*β (2.38)
n
количество трансформаторов
β
коэффициент загрузки, для потребителей второй категории принимается β=0.7
Sтр= 60.25/2*0.7=43 кВА
По каталогу выбираем 2-а возможных варианта мощности трансформатора, сводим данные в таблицу 2.10
Таблица 2.10 – Исходные данные трансформаторов
Тип трансформатора
Напряжение КЗ, Uкз,
%
Ток КЗ
I0, %
Потери,
кВт
Стоимость
одного
тран-ра,
руб
Рхх
Ркз
ТМ – 60/10
4.5
2.8
0.265
1.280
26650
ТМ – 100/10
2.6
0.365
1.970
30050
Расчёт будет вестись на примере двух трансформаторов ТМ-63/10,
ТМ-100/10
Находим приведенные потери холостого хода
DР’х.х1=DРх.х1+Кu.п*Sн1*Iхх1/100 (2.39)
DР’х.х2=DРх.х2+Кu.п*Sн2*Iхх2/100 (2.40)
DРх.х
потери мощности холостого хода, кВт
Кu.п
коэффициент измененных потерь Кu.п=0,1
Iо
ток холостого хода, %
DР’х.х1=0.265+0,1*60*2.8/100=0.43 кВт
DР’х.х2=0.365+0.1*100*2.6/100=0.625 кВт
Находим приведенные потери короткого замыкания
DР’.к.з1=DРк.з1+Кu.п*Sн1*Uк1/100 (2.41)
DР’.к.з2=DРк.з2+Кu.п*Sн2*Uк2/100 (2.42)
DРк.
потери мощности короткого замыкания, кВт
Uк
напряжение короткого замыкания, %
DР’.к.з1=1.280+0,1*60*4.5/100=1.55 кВт
DР’.к.з2=1.970+0.1*100*4.5/100=2.42 кВт
Рассчитаем коэффициент загрузки трансформаторов
Кз1=Sсм/n*Sтр1 (2.43)
Кз2=Sсм/n*Sтр2 (2.44)
Sтр
мощность выбранного трансформатора, кВт
Кз1=78.2/2*60=0.65
Кз2=78.2/2*100=0.4
Находим полные приведенные потери
DР’т1=DР’х.х1+Кз12*DР’к.з1 (2.45)
DР’т2=DР’х.х2+Кз22*DР’к.з2 (2.46)
DР’т1=0.43+0,652 *1.56=1 кВт
DР’т2=0.625+0.42*2.42=1.01 кВт
Определяем потери трансформаторов за год, DWа.тр, кВт
DWа.тр1=DРхх1*n*Тг+1/n*DРкз1(Sр/Sт1)2*τ (2.47)
DWа.тр2=DРхх2*n*Тг+1/n*DРкз2(Sр/Sт2)2*τ (2.48)
τ
время максимальных потерь, зависимость τ=F(cosf,Тм)=4000 ч время использования максимума нагрузки,Тм=4797 ч
DWа.тр1=0.265*2*6240+1/2*1.280(93.5/60)*4000=3307+6216=9523кВт*ч
DWа.тр2=0.365*2*6240+1/2*1.970(93.5/100)*4000=4555+3444=8000 кВт*ч
Находим стоимость потерь трансформаторов за год, Сn, руб.
Сn1=Со*DWа.тр1 (2.49)
Сn2=Со*DWа.тр2 (2.50)
Со
тариф, руб.
Сn1=1.393*9523=13265 руб.
Сn2=1.393*8000=11144 руб.
аходим стоимость амортизационных отчислений
Са1=У/100*К1*2 (2.51)
Са2=У/100*К2*2 (2.52)
У
процент амортизационных отчислений, У=6.3 %
К
капитальные затраты на количество трансформаторов, руб.
Са1 =6.3/100*26650*2=3357 руб.
Са2 =6.3/100*30050*2=3786 руб.
Находим ежегодные эксплуатационные расходы
Сэ1= Сn1+Са1 (2.53)
Сэ2= Сn2+Са2 (2.54)
Сэ1=13265+3358=16623 руб.
Сэ2=11144+3786=14930 руб.
Найдём приведённые затраты, З руб.
З1=Кн*К1+ Сэ1 (2.55)
З2=Кн*К2+ Сэ2 (2.56)
Кн
нормативный коэффициент экономической эфективностиости, Кн=0.125
З1=0.125*53300+16623=23285руб.
З2=0.125*60100+14930=22442руб.
Найдём срок окупаемости, Ток, лет
Ток=К2-К1/Сэ1-Сэ2 (2.57)
Ток= 60100-53300/16623-14930=4 лет
Проверим оба трансформатора по аварийному перегрузу.
Коэффициент загрузки по аварийному перегрузу равен 1.5
Кз=Sр/Sтр1 (2.58)
Кз=Sр/Sтр2 (2.59)
Кз1=93.5/60=1.56≤1.5- условие не выполняется
Кз2=93.5/100=0.93≤1.5-условие выполняется
Из технико экономического расчёта видно что более экономичный трансформатор ТМ-100/10, поэтому на подстанцию выбираем два трансформатора этого типа.
Полученные данные при расчёте сведены в таблицу 2.11
Таблица 2.11 – Технико-экономический расчёт выбора мощности трансформатора
Вариант
DРх,
DРкз,
I0,
Uкз,
К,(1-го
тр-ра)
тыс.руб
DР’х,
DР’кз,
DРт,
DЭа,
тыс.кВт
Кδ,
Са,
тр-ра/
год
Сn,
Сэ,
ТМ-60/10
0.43
1.55
1
9523
53300
3357
13265
16623
0.625
2.42
1.01
8000
60100
3786
11144
14930
2.9 Выбор конструкции распределительного устройства ВН ТП
Подстанции напряжением 6-10/0.4-0.66 кВ по месту нахождения на территории предприятия делятся следующим образом:
внутрицеховые, расположенные внутри производственных зданий с размещением электрооборудования непосредственно в производственном или отдельном закрытом помещении с выкаткой электрооборудования в цехи;
встроенные, находящиеся в отдельных помещениях, вписанных в контур основного здания, но с выкаткой трансформаторов и выключателей наружу;
пристроенные, т.е. непосредственно премыкающие к основному зданию;
отдельно стоящие на расстоянии от производственных зданий.
В основном широко применяются комплектные трансформаторные подстанции, которые изготавливаются для внутренней и наружной установки.
Камера трансформатора имеет естественную вентиляцию через верхние и нижние проёмы с жалюзи. Трансформаторы установлены в камере так, чтобы без снятия напряжения обеспечивалось удобное и безопасное наблюдение за уровнем масла в маслоуказателе, а также доступ к газовому реле
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12