Червячной называется зубчатая передача, состоящая из двух подвижных звеньев – червяка и зубчатого колеса и предназначенная для передачи и преобразования вращательного движения между звеньями оси которых скрещиваются. Угол скрещивания может быть любым, но чаще он равен 90°. Червяком называют звено, наружная поверхность которого имеет форму винта. Червячным колесом называется зубчатое колесо, которое зацепляется с червяком.
Основные достоинства червячных передач:
· благодаря малому числу заходов червяка (Z1= 1…4) червячная передача позволяет реализовывать в одной ступени большие передаточные отношения;
· обладает высокой плавностью, низким уровнем вибраций и шума;
· позволяет обеспечить самоторможение червячного колеса (при малых углах подъема витка передача движения от вала червячного колеса к червяку становится невозможной).
Основные недостатки червячных передач: высокая скорость скольжения вдоль линии зуба, что ведет к повышенной склонности к заеданию (необходимы специальные смазки и материалы для зубчатого венца червячного колеса), снижению КПД и более высокому тепловыделению.
Червячные передачи подразделяются:
1. по виду делительной поверхности червяка
· цилиндрические червячные передачи (рис. 9.3, а) – червяк и колесо в передаче имеют цилиндрические делительные и начальные поверхности;
· глобоидные червячные передачи (рис. 9.3, б) – делительная и начальная поверхности червяка образованы вращением отрезка дуги делительной или начальной поверхности парного червячного колеса вокруг оси червяка;
2. по виду теоретического торцового профиля витка червяка
· архимедов червяк – профиль выполнен по архимедовой спирали;
· эвольвентный червяк – профиль выполнен по эвольвенте окружности;
· конволютный червяк – профиль выполнен по удлиненной эвольвенте.
a) б)
2 2
02 02
w2 w2
P P
01 01
w1 w1
1 1
Цилиндрическая червячная передача Глобоидная червячная передача
Рис. 9.3
Геометрия зацепления цилиндрической червячной передачи
Основными геометрическими параметрами червяка являются (рис. 9.4):
· диаметр начального цилиндра dw1;
· диаметр делительного цилиндра d1 (если червячное зацепление выполнено без смещения режущего инструмента совпадает с начальным);
· диаметр цилиндра выступов dа1;
· диаметр цилиндра впадин df1;
· длина нарезанной части червяка b1;
da2
02
n db2
an
df2 N aw
P
da1 d1 df1
b1 n
Рис. 9.4
Наиболее часто встречаются червяки у которых сечение винта трапецеидальное с углом при вершине 40°. В плоскости перпендикулярной оси колеса червячное зацепление представляет собой эвольвентное реечное зацепление, поэтому геометрические размеры зубьев червяка и червячного колеса совпадают с размерами зубьев цилиндрического прямозубого колеса. Единственное отличие, то, что величина радиального зазора равна 0,2×m.
Поверхность червяка представляет собой совокупность винтовых линий. В зависимости от направления винтовой линии различают правые и левые винтовые поверхности червяков. Перемещая винтовую линию вдоль образующей цилиндра на некоторую долю шага, получаем параллельно расположенную винтовую линию, которую называют заходом. Червяки бывают одно-, двух-, трех- и четырёх- заходные. Число заходов удобнее определять по торцевому сечению (рис. 9.5) и обозначают Z1.
Рис. 9.5
Установим связь между диаметром делительного цилиндра и числом заходов червяка. Так как червяк представляет собой винт, то его развертка захода представляет собой наклонную линию под углом l (угол подъема винтовой линии) (рис. 9.6).
d1 S = p×Z1
S
l l
p× d1
Рис. 9.6
,®,
где S – ход червяка, это путь который проходит точка делительного цилиндра за время одного оборота червяка:
,
здесь р – шаг нарезки червяка.
Отсюда:
®.
В целях создания определенной номенклатуры инструмента, применяемого для изготовления червяков (червячных фрез) в полученную формулу вводится коэффициент червяка , тогда:
.
Наряду с осевым шагом у многозаходных червяков различают и торцевой шаг pt равный длине дуги окружности делительного цилиндра между двумя соседними заходами, исходя из рис. 9.6 получаем:
Кинематика червячной передачи
Получим формулу для передаточного отношения червячной передачи. В точке контакта окружные скорости червяка и червячного колеса совпадают:
где u1 - скорость на червяке:
где n1 – частота вращения червяка, об/мин; S – ход червяка, м.
u2 - скорость на червячном колесе:
Отсюда приравнивая правые части полученных выражений имеем:
так как и (длина делительной окружности червячного колеса в радиусах и в шагах), окончательно получаем:
®,
или и , отсюда:
Винтовые передачи
Винтовые передачи предназначены для преобразования вращательного движения в поступательное, при этом гайка и винт могут иметь либо одно из указанных движений, либо оба движения вместе.
Имеют степень подвижности равную единице, т.к. при повороте подвижного звена вокруг оси оно перемещается на определённую величину вдоль той же оси. Звенья передачи образуют кинематическую пару 5 класса.
Основные достоинства передачи: простота конструкции и изготовления; компактность при высоких передаваемых нагрузках; плавность и бесшумность работы; возможность обеспечения медленных перемещений с большой точностью.
Основные недостатки передачи: повышенный износ резьбы вследствие большого трения скольжения; низкий к.п.д.
Винтовые передачи классифицируются по функциональному назначению на:
- грузовые, предназначенные для создания больших сил (прессы, домкраты, тиски и т.п.);
- ходовые, предназначенные для точных перемещений (механизмы подачи станков, измерительные приборы, установочные и регулировочные устройства).
Основные типы резьб:
1. Прямоугольная (рис. 9.7). Профиль резьбы – квадрат. Из всех резьб имеют самый высокий к.п.д., так как угол профиля резьбы a = 0°. Обладают пониженной прочностью. При износе образуются осевые зазоры, которые трудно устранить. В настоящее время не стандартизированы. Имеют ограниченное применение.
Рис. 9.7
Основные параметры резьбы: d, d1, d2 - соответственно наружный, средний и внутренний диаметр резьбы; р – шаг резьбы, расстояние между двумя одноимёнными сторонами двух соседних витков в осевом направлении; S – ход резьбы, расстояние между двумя одноимёнными сторонами одного и того же витка в осевом направлении (, где Z – число заходов резьбы); a - угол профиля резьбы; g - угол подъёма резьбы.
2. Трапецеидальная симметричная (рис. 9.8). Профиль резьбы – равнобочная трапеция с углом a = 30°. Характеризуются небольшими потерями на трение, технологичны. Применяется для передачи реверсивного движения под нагрузкой.
Рис. 9.8
3. Трапецеидальная несимметричная, или упорная (рис. 9.9). Профиль резьбы – неравнобочная трапеция с углом a = 27°. Для возможности изготовления резьбы фрезерованием рабочая сторона профиля имеет угол наклона 3°. К.п.д. выше, чем у трапецеидальной симметричной. Закругление впадин повышает прочность. Применяются преимущественно при высоких односторонних нагрузках.
Рис. 9.9
Контрольные вопросы
9. Как формируется профиль зуба циклоидального зацепления.
10. Дайте характеристику часового и цевочного циклоидальных зацеплений.
11. Назовите основные геометрические параметры червяка и червячного колеса.
12. Проанализируйте кинематику червячных передач.
13. Проанализируйте и сопоставьте между собой основные виды винтовых передач.
Лекция 10
Кулачковые механизмы: общие сведения, классификация, кинематический анализ и синтез, определение минимально-допустимых размеров кулачка. Выбор закона движения толкателя.
Кулачковым называется трехзвенный механизм с высшей кинематической парой, входное звено которого называется кулачком, а выходное - толкателем (или коромыслом). Кулачок – звено, элемент высшей пары, имеющий профиль переменной кривизны. Толкатель может совершать поступательное или вращательное движение, во втором случае его называют коромысло.
Часто для замены в высшей паре трения скольжения трением качения и уменьшения износа, как кулачка, так и толкателя, в схему механизма включают пассивное дополнительное звено – ролик и вращательную кинематическую пару.
Кулачковые механизмы предназначены для преобразования вращательного или поступательного движения кулачка в возвратно-вращательное или возвратно-поступательное движение толкателя. При этом в механизме с двумя подвижными звеньями можно реализовать преобразование движения по сложному закону. Важным преимуществом кулачковых механизмов является возможность обеспечения точных выстоев выходного звена. Это преимущество определило их широкое применение в простейших устройствах цикловой автоматики и в механических счетно-решающих устройствах (арифмометры, календарные механизмы). Кулачковые механизмы можно разделить на две группы. Механизмы первой обеспечивают перемещение толкателя по заданному закону движения. Механизмы второй группы обеспечивают только заданное максимальное перемещение выходного звена – ход толкателя. При этом закон, по которому осуществляется это перемещение, выбирается из набора типовых законов движения в зависимости от условий эксплуатации и технологии изготовления.
Основные параметры кулачкового механизма (рис. 10.1)
Большинство кулачковых механизмов относится к цикловым механизмам с периодом цикла равным 2p . В цикле движения толкателя в общем случае можно выделить четыре фазы: удаления, верхнего стояния (или выстоя), приближения и нижнего стояния (или выстоя). В соответствии с этим, углы поворота кулачка или фазовые углы делятся на: угол удаления jу ; угол верхнего выстоя jвв ; угол приближения jп ; угол нижнего выстоя jнв .
Сумма трех углов образует угол jраб, который называется рабочим углом.
jраб = jу + jвв + jп.
Кулачок механизма характеризуется двумя профилями: центровым (или теоретическим) и конструктивным (или действительным). Под конструктивным понимается наружный рабочий профиль кулачка. Теоретическим или центровым называется профиль, который в системе координат кулачка описывает центр ролика при движении ролика по конструктивному профилю кулачка. На рис. 10.1 изображена схема плоского кулачкового механизма с двумя видами выходного звена: с толкателем 2, совершающим возвратно-поступательное движение и коромыслом 4, совершающим качающееся (возвратно-вращательное) движение. На этой схеме указаны основные параметры плоских кулачковых механизмов.
5 aI n 4
uBi
SAi SBi j4
2 0 3 B
C
ai
uAi K2 j40
n n
A K1 jраб jу
rр jвв aw
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21