Точно так же и в макроэкономике. Государство, изменяя государственные расходы, налоги, денежную массу влияет на экономический рост, величину валового внутреннего продукта, занятость и инфляцию. Отдельные фирмы и предприниматели действуют в том «коридоре», который им задан государством и общей рыночной ситуацией. Так, в условиях совершенной конкуренции ни одна фирма и ни один предприниматель не может установить иную цену кроме той, которая установлена рынком. От государственной экономической политики во многом зависит важнейшая для криминологии величина – неравенство в распределении доходов, выражаемое коэффициентом Джини.
Вполне очевидно, что макроэкономические показатели определенным образом коррелируют со структурой преступности. Вообще говоря, экономический рост должен порождать иную картину преступности, нежели экономический спад. Так, увеличение государственных расходов, снижение налогов, рост денежной массы обычно оживляют экономическую жизнь страны. С позитивной стороны – увеличиваются занятость и доходы населения, а с негативной – растёт инфляция, суммы хищений. Уменьшение государственных расходов, повышение налогового бремени, уменьшение денег в обращении влекут за собой рост безработицы, снижение инфляции, повышение числа насильственных преступлений, в том числе связанных с потреблением психоактивных препаратов – алкоголя, наркотиков.
Если законодатель и правоохранительные органы не будут проявлять должного интереса к предпринимателям и предпринимательской жажде наживы, то число тяжких и особо тяжких преступлений в обществе будет стремиться к своему критическому максимуму.
Если законодательная и исполнительная ветвь власти не будут проявлять должного внимания к такому ключевому преступность образующему фактору, как неравенство в распределении доходов населения, то мы с неизбежностью столкнемся с ростом насильственных преступлений - умышленных убийств, причинением тяжкого и иного вреда здоровью граждан, грабежами и разбоями.
В свое время выдающийся английский экономист Адам Смит высказал мысль о «невидимой руке», которая правит экономикой, автоматически устанавливая на рынке равновесие спроса и предложения, регулируя процессы распределения редких ресурсов, потребления товаров и услуг. Его концепция, положенная в основу классической школы экономики, требовала максимального исключения государства из процессов управления экономикой. Частный интерес, деятельность свободных экономических агентов – это и есть по существу та «невидимая рука», которую воспевает А.Смит. Другой не менее выдающийся английский экономист Джон Мейнорд Кейнс поправил своего предшественника, указав на тот непреложный факт, что «невидимая рука» не влечет автоматического равновесия на рынке, что пассивность правительства зачастую ведет к глубокому экономическому кризису. Таким образом, и здесь мы попали в ситуацию необходимости какого-то оптимального сочетания общественных и личных интересов.
Согласно закону Оукена между динамикой уровней валового внутреннего продукта (ВВП) и динамикой уровней безработицы существует обратная зависимость. То есть с ростом безработицы ВВП, естественно, начинает снижаться. Отсюда очевидна нежелательность безработицы с экономической точки зрения. Однако по закону Филлипса (кривая Филлипса) между безработицей и инфляцией существует также обратная зависимость: чем выше в коротком периоде уровень безработицы, тем ниже уровень инфляции. Опираясь на кривую Филлипса, экономисты подчеркивают: «Снижение уровня инфляции спроса может быть достигнуто только путем ограничения занятости и увеличения безработицы»[83]. Далее, естественно, макроэкономическая теория указывает правительству и центробанку путь борьбы с инфляцией, например, сокращение государственных закупок, уменьшение денежной массы и увеличение, таким образом, безработицы в стране. Специальный коэффициент потерь показывает, сколько процентов годового ВВП необходимо принести в жертву, чтобы снизить инфляцию на один процентный пункт. При этом экономисты не принимают во внимание тот важный факт, что безработица тесно коррелирует с имущественной преступностью (различными хищениями: кражами, грабежами, разбоями…). Расчеты по эмпирическим данным указывают, что эластичность между безработицей и имущественной преступностью обычно больше единицы, а это значит – увеличение безработицы на 1% повлечет рост имущественных преступлений более чем на 1%. Следовательно, борьба с инфляцией спроса путем сокращения занятости повлечет за собой не только естественное снижение ВВП, учитываемое в СНС по правилам МОТ ООН, но и ущерб, вызванный ростом числа имущественных преступлений (расширением сферы теневой экономики), который, в лучшем случае, попадает в милицейскую статистику.
Чтобы упростить понимание криминологического смысла данной макроэкономической задачи рассмотрим ее на условном примере. Уравнение кривой Филлипса представлено: p = pе - b(u – u*) + e, где p - фактический уровень инфляции, pе – ожидаемый уровень инфляции, b - коэффициент чувствительности ВВП к динамике циклической безработицы, u – фактический уровень безработицы, u* - естественный уровень безработицы, e - внешний ценовой шок.
Пусть pе = 8%; u* = 5%; b = 0,4; e = 0. Предположим, правительство, снизив закупки, увеличило уровень безработицы до 10%. Тогда имеем: p = 0,08 – 0,4(0,1 – 0,05) + 0 = 0,06 = 6%. То есть уровень инфляции оказался равным 6%, а не 8% как ожидалось (выигрыш 2%). Разрыв между естественным и фактическим уровнем безработицы составил 5% (10% - 5%). Согласно закону Оукена увеличение безработицы естественно привело к снижению ВВП (Y) на величину: , и это рассматривается как потери. Теперь важно оценить, до какой степени нужно жертвовать занятостью и ВВП в пользу снижения инфляции, найти между ними разумный компромисс, но для этого следует сделать еще одно принципиальное дополнение, обусловленное связью между безработицей и преступностью. То есть увеличить долю издержек, которые приносятся в жертву снижению инфляции.
Положим коэффициент потерь ВВП от снижения инфляции равным 3%. Допустим, что инфляция снижена за период на 5%. Тогда ВВП снизится за тот же период на 15% без учета потерь вызванных связью между безработицей и имущественными преступлениями. Теперь, предположим, что по эмпирическим данным для конкретного региона установлена эластичность между безработицей и имущественной преступностью равная двум. Это значит, что 1% рост безработицы вызовет 2% рост имущественной преступности. В нашем примере 5% рост безработицы вызовет 10% рост имущественных преступлений. Оценка стоимости этого 10%-го роста, по моему мнению, также должна учитываться при установлении компромисса между безработицей и инфляцией. Соответственно, с учетом вышеизложенного мнения правительству следует позволить несколько больший рост инфляции и меньший рост безработицы, чем оно первоначально планировало.
ПРИЛОЖЕНИЕ
РЕЗЮМЕ (основные определения):
функцией f, заданной на некотором множестве Х, называется правило, по которому каждому элементу хХ ставится в соответствие один и только один элемент yY. Множество Х называется областью определения функции, а Y – областью её определения;
статистическая закономерность – установленная в виде вероятностной математической модели связь между переменными;
сверхточное измерение – измерение по шкале отношений со строго фиксированным нулем со сколь угодно глубокой детализацией измеряемой переменной (переменных) – до сотых, тысячных, десятитысячных и т.д.;
нулевая гипотеза (H0) – предположение об отсутствии связи между переменными или отсутствии значимости оценок регрессионной модели (параметров, коэффициента корреляции, коэффициента детерминации) и прогнозного значения;
альтернативная (исследовательская гипотеза (H1) – обратная нулевой, утверждающая, что связь между переменными неслучайна (не равна нулю), что параметры регрессионной модели, коэффициент корреляции и коэффициент корреляции статистически значимы;
коэффициент корреляции - показатель силы и направления связи (вверх или вниз) между переменными;
коэффициент детерминации – показатель объясненной вариации результативного признака, указывает на то, какую часть вариации объясняемой переменной можно отнести на счет объясняющей (объясняющих) переменной;
регрессионное уравнение – уравнение, обычно получаемое методом наименьших квадратов (или иным подходящим методом), позволяющее прогнозировать значения управляемой переменной по значениям управляющей (управляющих) переменной;
коэффициент регрессии (первая производная или наклон) показывает, на сколько в абсолютном выражении изменится объясняемая переменная игрек при изменении управляющей переменной икс на единицу измерения;
сдвиг (свободный член) – показатель значения функции (корреляционной зависимости) в точке «нуль» области её определения;
коэффициент эластичности показывает, на сколько процентов изменится зависимая переменная игрек при изменении независимой переменной икс на один процентный пункт;
коэффициент Джини – показатель степени неравенства в распределении доходов народонаселения по 20% группам (измеряется по формуле);
закон Оукена устанавливает обратную зависимость между динамикой уровней валового внутреннего продукта (ВВП) и динамикой уровней безработицы. То есть с ростом безработицы ВВП, естественно, начинает снижаться;
закон Филлипса (кривая Филлипса) устанавливает обратную зависимость между безработицей и инфляцией: чем выше в коротком периоде уровень безработицы, тем ниже уровень инфляции. Опираясь на кривую Филлипса, экономисты подчеркивают: «Снижение уровня инфляции спроса может быть достигнуто только путем ограничения занятости и увеличения безработицы»;
карта контроля качества – это график, на который наносят центральную линию и контрольные границы, после чего здесь отмечают конкретные эмпирические данные процесса, и изучают его динамику. То есть контрольная карта – это разновидность графика, отличающаяся от обычного графика, наличием линий, называемых контрольными границами, или границами регулирования. Эти границы обозначают ширину разброса, образующегося в обычных условиях течения процесса;
диаграмма Парето – диаграмма построенная по принципу убывания вклада и накапливания процента (до 100%), удобная для представления и исследования структурного вклада, например, какой вклад, вносят конкретные детерминанты (факторы) в формирование преступности или, какой долевой вклад в структуру преступности вносят её конкретные структурные составляющие - кражи, грабежи, разбои и т.д.;
F-статистика Фишера – показатель качества регрессионного уравнения в целом (эмпирический коэффициент сравнивается с табличным).
ОСНОВНЫЕ ТЕРМИНЫ:
математическое моделирование юридических, криминогенных и иных социальных процессов, функция, аргумент функции (объясняющая, управляющая переменная, предиктор, независимая переменная, факторная переменная, экзогенная переменная); функция (зависимая переменная, эндогенная переменная, управляемая, объясняемая переменная, результативная переменная); область определения функции, область значений функции; параметры уравнения, первая производная функции, свободный член; коэффициент регрессии (первая производная), коэффициент корреляции, коэффициент детерминации, F-статистика Фишера, t-статистика; нулевая гипотеза, альтернативная (исследовательская) гипотеза; диаграмма разброса, дисперсия, стандартное отклонение; стандартная ошибка регрессии, стандартная ошибка коэффициента регрессии, стандартная ошибка сдвига (свободного члена); доверительный интервал; общая дисперсия, остаточная дисперсия, факторная дисперсия (объясненная дисперсия); средняя ошибка аппроксимации; коэффициент эластичности; коэффициент Джини; линейный коэффициент корреляции, множественный коэффициент корреляции, коэффициенты ассоциации и контингенции, коэффициент взаимной сопряженности Пирсона-Чупрова, а также коэффициент Фехнера, коэффициент Спирмена, коэффициент корреляции Кендалла, положительная и отрицательная корреляция, слабая, умеренная и сильная корреляционная связь; закон Оукена, кривая Филипса.
♫ Практическое применение (показательные примеры):
♪☻
Задача №1.
Дано: интуитивно представляется, что число выявленных лиц, совершивших преступления должно зависеть от числа зарегистрированных преступлений. В этой связи следует сформулировать рабочую (исследовательскую) гипотезу и проверить её с помощью регрессионно-корреляционного анализа.
Таблица №1.
t, годы
Зарегистрированно преступлений, шт.
Выявлено лиц, совершивших преступления, чел.
1987
1185914
969338
1988
1220361
834673
1989
1619181
847577
1990
1839451
897229
1991
2167964
956258
1992
2760652
1148962
1993
2799614
1262735
1994
2632708
1441562
1995
2755669
1595501
1996
2625081
1618394
1997
2397311
1372161
1998
2581940
1481503
1999
3001748
1716679
2000
2952367
1741439
2001
2968255
1644242
2002
2526305
1257700
2003
2756398
1236733
2004
2893810
1222504
2005
3554738
1297123
2006
3855373
1360860
Требуется: 1) сформулировать нулевую и альтернативную гипотезы; 2) провести спецификацию модели; 3) сделать таблицу данных; 4) построить диаграмму разброса (рассеяния)[84] для переменных модели и аппроксимирующую функцию (методом наименьших квадратов); 5) Вычислить параметры уравнения; 6) оценить статистическую значимость параметров уравнения; 7) измерить коэффициент детерминации и дать его интерпретацию; 8) вычислить среднюю ошибку аппроксимации; 9) оценить качество полученного регрессионного уравнения в целом с использованием средней ошибки аппроксимации; 10) оценить качество регрессионного уравнения с помощью F-критерия Фишера; 11) измерить эластичность числа выявленных лиц, совершивших преступления по числу совершенных преступлений и дать интерпретацию полученному коэффициенту эластичности; 12) оценить без использования (точечная оценка) и с использованием доверительных интервалов (интервальная оценка), какое число лиц будет выявлено в случае, если число зарегистрированных преступлений составит величину равную 4500000.
РЕШЕНИЕ:
1). Нулевая гипотеза гласит, что между переменными «число выявленных лиц, совершивших преступления» и «число зарегистрированных преступлений» статистически значимая связь отсутствует. Данная гипотеза принимается без доказательств. Альтернативная гипотеза, напротив, указывает на то, что между переменными модели существует статистически значимая связь.
2). Проведем спецификацию модели – определим зависимую и независимую переменные. В качестве независимой переменной выберем число зарегистрированных преступлений, которую обозначим через х, а в качестве зависимой переменной (y) – число выявленных лиц, совершивших преступления. Такой характер зависимости представляется очевидным, поскольку сначала совершается, выявляется и регистрируется преступление, а потом уже ведется работа по выявлению лица или лиц, его совершивших, которая может быть более или менее успешной.
3). Построим диаграмму разброса и график зависимости между переменными[85] в программе Excel, а также проведем полный регрессионный анализ с помощью данного аналитического пакета:
Как видно, с помощью программы мы нанесли точки на координатную ось, построили аппроксимирующее линейное уравнение с соответствующими параметрами, а также получили коэффициент детерминации. Диаграмма рассеяния показывает, что в целом связь между переменными положительная, хотя две последние точки находятся ниже аппроксимирующей кривой, указывая, что большим значениям преступности соответствуют меньшие значения выявленных лиц. Отчасти такое состояние дел можно объяснить началом «работы» нового УПК РФ (вступил в силу в середине 2002 года).
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32