2. Измерение крайм-рисков преступности
Истоки термина: термин «бета-коэффициент крайм-риска» (β-коэффициент крайм-риска) и методика его измерения были введены мной в 2002 году, как удобный инструмент для сравнительного анализа преступности в различном пространственно-временном континууме. β крайм-риск преступности – это сравнительный показатель риска преступности (или её конкретных структурных составляющих) на объекте S (конкретный населенный пункт (город, район), субъект РФ, страна) за период Т к среднему риску по всем исследуемым объектам G (всем населенным пунктам, субъектам РФ, странам). Рассчитывается как коэффициент регрессии в уравнении, где независимой переменной выступают коэффициенты преступности (или её отдельных структурных составляющих) по G за период Т, а зависимой – коэффициенты преступности (или её отдельных структурных составляющих) по S за тот же период. β крайм-риск преступности показывает, на сколько в абсолютном выражении изменяется коэффициент преступности (или её структурной составляющей) по S при изменении коэффициента преступности по G на единицу измерения (1 преступление). β крайм-риск преступности является показателем устойчивости временного ряда преступности на объекте S и надежности прогнозирования преступности по данному объекту.
Задачи, решаемые с помощью β-коэффициента крайм-риска:
1). Для исследуемых объектов, например, субъектов РФ, районов области, края, республики за ряд лет (месяцев), устанавливается в виде вещественного числа β-коэффициент крайм-риска, позволяющий сравнить, насколько в среднем отличаются между собой различные территории по уровню преступности и, насколько в среднем уровень преступности в том или ином исследуемом объекте выше или ниже среднего уровня по всем исследуемым объектам за определенный период времени. При этом β-коэффициент крайм-риска для всей совокупности исследуемых объектов всегда равен единице и символизирует средний риск преступности на данной территории за данное время. Кроме того, β-коэффициент крайм-риска преступности показывает, на сколько в абсолютном выражении в будущем изменится коэффициент преступности (или её структурной составляющей) по объекту при изменении коэффициента преступности по всем объектам на единицу измерения (1 преступление на 100 тысяч человек).
P.S. β-коэффициент крайм-риска является более точным, информативным и удобным показателем, чем обычный коэффициент преступности, поскольку: а) учитывает все коэффициенты преступности – здесь сравниваются коэффициенты преступности по каждой i-той (конкретной территории) с коэффициентами преступности по всем исследуемым объектам за один и тот же временной период; б) представляется числом меньше 10-ти. Как правило, это число незначительно больше или меньше единицы; в) позволяет достаточно точно предсказывать будущий коэффициент преступности по объекту в зависимости от изменения коэффициента преступности по всей территории принятой за общую базу.
2) За определенный временной период устанавливается зависимость между β-коэффициентами крайм-риска (в данном случае независимая переменная) и значением соответствующих коэффициентов преступности (зависимая переменная) – «оценочное уравнение коэффициентов преступности» (ОУКП), что позволяет, зная β-коэффициент крайм-риска для данной территории (S) и, не зная коэффициент преступности здесь (S), примерно оценить значение коэффициента преступности на данной территории (S).
Математический смысл β-коэффициента крайм-риска:
1) β-коэффициент крайм-риска – это первая производная y΄ или от функции y=f(x), где y – коэффициенты преступности по i-тому объекту за исследуемый период, х - коэффициенты преступности по всем исследуемым объектам за тот же период, y΄ - первая производная, показывающая скорость изменения функции, то есть насколько в абсолютном выражении изменится результирующая (объясняемая, зависимая, управляемая, эндогенная) переменная при изменении независимой (объясняющей, управляющей, факторной, экзогенной) переменной на единицу измерения. В данном случае, если икс изменится на единицу (1 преступление на 100 тысяч населения), то игрек изменится на величину y΄ преступлений.
P.S. В теории статистики первую производную обычно называют коэффициентом регрессии. Следовательно, β-коэффициент крайм-риска – это коэффициент регрессии в регрессионном уравнении, которое может быть получено с помощью различных методов, в частности с помощью метода наименьших квадратов.
☻Математический и криминологический смысл «оценочного уравнения коэффициентов преступности» (ОУКП): в данном случае строится линейная функция: у=а+bβ, где y - коэффициент преступности (обычно на 100 тысяч населения), а – свободный член, в данном случае символизирующий уровень преступности при отсутствии риска (β=0) и принимается равным минимальному значению вариационного ряда уровней преступности по исследуемым объектам за тот или иной временной период (a=ymin), b – скорость изменения риска при изменении β на единицу измерения (в данном случае вычисляется как разница между средним () и минимальным (ymin) уровнем преступности на 100 тысяч населения - , β – это β-коэффициент крайм-риска и в данном уравнении независимая (факторная, объясняющая, экзогенная, управляющая) переменная.
3. Измерение риска преступности в городе с помощью
стандартного отклонения преступности по районам
Пусть нас интересует, как можно измерить риск преступности (вида преступности) в городе (области, стране, мире) по его структурным составляющим – районам (областям, странам). В данном случае можно использовать простой алгоритм:
1) найти долевой вклад преступности каждого района (wi);
2) составить ковариационную матрицу: соv (А, В, С…);
3) найти стандартное отклонение преступности в городе по формуле:
.
Рассмотрим простой пример. Пусть нам нужно измерить риск преступности в городе, состоящем из трех районов: А, В и С по статистическим данным за период с 1999 по 2004 годы (то есть по временным рядам).
Шаг№1. Находим удельный вес преступности районов.
Таблица №1. Исходные данные.
t, годы
КП в районе А
КП в районе В
КП в районе С
1999
1570
1810
2010
2000
1620
1890
2070
2001
1501
1709
1997
2002
1520
1770
2003
1517
1790
2200
2004
1611
1801
2020
Сумма
9339
10770
12297
Доля (wi)
0,288
0,332
0,379
Искомые доли найдены. Сумма долей, естественно, равна единице.
Шаг №2. Находим ковариационную матрицу: соv (А, В, С):
соv (А, В, С)==.
Шаг №3. Находим =(w1·w1·AA)+( w1·w2·AB)+
(w1·w3·AC)+(w2·w1·AB)+(w2·w2·BB)+(w2·w3·BC)+(w3·w1·AC)+(w3·w2·BC)+
(w3·w3·CC)==42,5.
Таким образом, мы получили величину полезную для относительного сравнения риска преступности по различным территориям. Например, можно сравнивать между собой города, области, страны.
РЕЗЮМЕ (основные определения)
β-коэффициент крайм-риска преступности – это сравнительный показатель риска преступности (или её конкретных структурных составляющих) на объекте S (конкретный населенный пункт (город, район), субъект РФ, страна) за период Т к среднему риску по всем исследуемым объектам G (всем населенным пунктам, субъектам РФ, странам). Рассчитывается как коэффициент регрессии в уравнении, где независимой переменной выступают коэффициенты преступности (или её отдельных структурных составляющих) по G за период Т, а зависимой – коэффициенты преступности (или её отдельных структурных составляющих) по S за тот же период. β крайм-риск преступности показывает, на сколько в абсолютном выражении изменяется коэффициент преступности (или её структурной составляющей) по S при изменении коэффициента преступности по G на единицу измерения (1 преступление на 100 тысяч человек). β крайм-риск преступности является показателем устойчивости временного ряда преступности на объекте S и надежности прогнозирования преступности по данному объекту;
эластичность β-коэффициента крайм-риска показывает на сколько процентов изменится коэффициент преступности по S при изменении коэффициента преступности по G на 1%;
ОСНОВНЫЕ ТЕРМИНЫ
описательная статистика преступности, меры центральной тенденции, меры вариации признака, β-коэффициент крайм-риска преступности, эластичность β-коэффициента крайм-риска, оценочное уравнение коэффициентов преступности (ОУКП), вариационный ряд преступности, временной ряд преступности, пространственный ряд преступности, частотный ряд (ряд распределения) преступности, динамический вариационный ряд преступности, стационарный вариационный ряд преступности, ранжированный вариационный ряд преступности.
РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ:
♫ практическое применение (показательные примеры):
♪☻
Задача №1. Дано: 1) уровень преступности на 100 тысяч населения в Российской Федерации за 10 лет с 1997 по 2006 годы (таблица №1); 2) уровень преступности в Республике Татарстан на 100 тысяч населения с 1997 по 2006 годы (таблица №1).
Требуется найти: β-коэффициент крайм-риска в Республике Татарстан и дать его подробную интерпретацию; 2) найти эластичность β-коэффициента крайм-риска в Республике Татарстан при КП на 100 тысяч населения по Российской Федерации равном 4000 преступлений и дать его подробную интерпретацию; 3) построить график эластичности преступности в Республике Татарстан при различных значениях КП по Российской Федерации.
Решение задачи №1.
1). Строим таблицу mxn, где m – рабочие строки, n – рабочие столбцы. В данном случае 10х2 (десять рабочих строк и два рабочих столбца). Вспомогательные строки и столбцы используются только в представительских целях, так как в расчетах не используются.
Таблица №1.
Коэффициент
преступности в РФ
преступности в
Республике Татарстан
1629
1308
1998
1759
1402
2026
1909
2028
1860
2039
1891
1760
1533
1926
1559
2007
1683
2005
2478
2440
2006
2687
2780
2). Получаем регрессионное уравнение вида у=f(x), где y – уровень преступности в Республике Татарстан на 100 тысяч населения, х – уровень преступности на 100 тысяч населения в Российской Федерации, f - конкретная (определенная) функция, то есть правило, по которому связываются левая и правая части уравнения (или параметризация уравнения)[29].
P.S. Существуют различные методы параметризации функций и статистических закономерностей: 1) метод наименьших квадратов; 2) метод контрольных точек; 3) метод средних; 4) метод сумм; 5) метод кривых Пирсона и другие. Наибольшее распространение получил метод наименьших квадратов, как наиболее точный, в связи с чем реализован во всех программных статистических и математических пакетах.
В нашем примере с помощью компьютерной программы, например, Exсel, Statistica, SPSS, Мathcad…получаем следующее регрессионное уравнение:
у=1,4х-1018
Покажем процедуру решения для нашего примера. Система линейных уравн ений для оценки параметров а и b методом наименьших квадратов:
1). Строим расчетную таблицу.
№/№
х
у
y∙x
x2
1
2130732
2653641
2
2466118
3094081
3
3867634
4104676
4
3772080
4112784
5
3855749
4157521
6
2698080
3097600
7
3002634
3709476
8
3377781
4028049
9
6046320
6140484
10
7469860
7219969
∑
(Итого или сумма)
20339
18365
38686988
42318281
2). Подставляем значения из расчетной таблицы в систему нормальных уравнений:
3). Решаем систему нормальных уравнений через метод определителей или метод последовательного исключения переменных, чтобы найти искомые параметры а и b. В нашем случае применим метод определителей:
∆== 10∙42318281-20339∙20339=9507889
∆а==18365∙42318281-38686988∙20339=-9679418367
∆b==10∙38686988-20339∙18365=13344145
а=∆а:∆= -9679418367: 9507889=-1018
b=∆b:∆=13344145: 9507889=1,4.
Первая производная (в регрессионном уравнении - коэффициент регрессии) в данном случае 1,4. Следовательно, β-коэффициент крайм-риска в Республике Татарстан равен 1,4.
Ответ: β-коэффициент крайм-риска в Республике Татарстан = 1,4.
Интерпретация β-коэффициента крайм-риска в Республике Татарстан: 1) уровень преступности в Республике Татарстан за исследуемый временной период в среднем на 40% выше, чем по Российской Федерации в целом, поскольку средний риск по РФ равен единице (1,4-1=0,4 или 40% (0,4∙100=40)). Свободный член в данном уравнении криминологического смысла не имеет. 2) β-коэффициент крайм-риска преступности в Республике Татарстан показывает, что изменение коэффициента преступности по Российской Федерации на единицу измерения (1 преступление на 100 тысяч населения) влечет изменение уровня преступности в Республике Татарстан на 1,4 преступлений, что в свою очередь означает меньшую устойчивость преступности в Республике Татарстан по сравнению с Российской Федерацией в целом, а, соответственно, и менее надежные прогнозы преступности по данной территории. Например, если коэффициент преступности по Российской Федерации увеличится на 5 преступлений, то в Республике Татарстан он вырастет приблизительно на 7 преступлений. Если же коэффициент преступности по Российской Федерации уменьшится на 5 преступлений, то коэффициент преступности в Республике Татарстан уменьшится примерно на 7 преступлений.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32